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ABSTRACT
Real-time large-scale personalized recommendation systems power
several user-facing products at many social media and web plat-
forms. To meet business requirements, such applications must score
millions of structured candidate documents associated with each
query, offer a high degree of data freshness, and respond with low
latency. To address these challenges, many such systems in practice
make use of content based recommendation models based on logis-
tic regression. A fundamental problem with content based models
is that they are based primarily on the explicit user context in the
form of user profile, but do not take into account implicit user con-
text in the form of user interactions.

We address the following problem: How do we incorporate user
item interaction signals as part of the relevance model in a large-
scale personalized recommendation system such that, (1) the ability
to interpret the model and explain the recommendations is retained,
and (2) the existing infrastructure designed for the (user profile)
content-based model can be leveraged? We propose Dionysius,
a hierarchical graphical model based framework for incorporating
user interactions into recommender systems. We learn a hidden
fields vector for each user by considering the hierarchy of inter-
action signals, and replace the user profile based vector with this
learned vector, thereby not expanding the feature space at all. Thus,
our framework allows the use of existing recommendation infras-
tructure that supports content based features. We have implemented
and deployed this system as part of the recommendation platform
in a large professional social network. We validate the efficacy
of our approach through extensive offline experiments with differ-
ent model choices, as well as online A/B testing experiments. Our
deployment of this system as part of the job recommendation en-
gine has resulted in significant improvement in the quality of the
retrieved results, thereby generating improved user experience and
positive impact for millions of users.

1. INTRODUCTION
Personalized recommendation systems form the backbone of sev-

eral user-facing products at many large Internet companies. Such
systems pose unique challenges, wherein personalized recommen-
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dations need to computed in real-time from millions of structured
candidate items while providing a high degree of data freshness. To
address these challenges, many such systems in practice make use
of content based recommendation models based on logistic regres-
sion. Content based models can be implemented by incorporating
content related features across structured user fields and/or struc-
tured item fields as part of the model, in which the feature space
is usually static and limited. Consider the job recommendation do-
main for example. In this application, structured user fields could
include the user’s current job title, seniority, skills, work experi-
ence, education experience, and so on. Structured job fields could
include the job title, function, industry, company, seniority, skills,
description, and so on. Content related features could be defined
in terms of similarity between different combinations of user fields
and job fields. Such features are easy to compute in both the offline
training pipeline and the online prediction stage. Another benefit is
that the resulting model can be easily interpreted, and explanations
could be provided for the item recommendations.

A fundamental problem with content based models is that they
are based primarily on the explicit user context (say, in the form of
user profile), but do not take into account implicit user context in
the form of user interactions. However, two users with near identi-
cal profiles may have very different preferences for job recommen-
dations: the first user may prefer jobs with similar titles as her cur-
rent position from a few selected companies, while the second user
may prefer jobs with identical title as her current position but from
a wider range of companies. A potential solution is to introduce
dynamic user interaction signals (e.g., user m applied to job k) in
the logistic regression model. A common practice is to introduce
ID-level regression coefficients in addition to the global regression
model in a Generalized Linear Model (GLM) setting, which is re-
ferred to as generalized linear mixed model (GLMix) [19] in the
statistics literature. The key challenge for such GLMix model is
the high computational complexity by significantly expanding the
feature space. Imagine the scenario that we have 100M+ users and
each user has 1000 non-zero coefficients on job features, this ap-
proach introduces more than 1011 features to learn in the model. In
practice, there are various approaches to tackle this challenge, by
applying dimension reduction methods (such as feature hashing)
or applying parallelized block coordinate descent under the Bulk
Synchronous Parallel paradigm. While the former one reduces the
explanation power of the model, the latter one requires significant
infrastructure change.

We address the following problem: How do we incorporate user
item interaction signals as part of the relevance model in a large-
scale personalized recommendation system such that, (1) the ability
to interpret the model and explain the recommendations is retained,
and (2) the existing infrastructure designed for the (user profile)



content-based model can be leveraged? We propose Dionysius,
a hierarchical graphical model based framework for incorporating
user interactions into recommender systems. We learn a hidden
fields vector for each user by considering the hierarchy of inter-
action signals, and replace the user profile based vector with this
learned vector, thereby not expanding the feature space at all. Thus,
our framework allows the use of existing recommendation infras-
tructure that supports content based features. The intuition under-
lying our model is that there is a hierarchy in the strength of user
interactions: in the job recommendation application as an example,
explicit feedback > job application > job view. Our model uses
the user’s original profile based fields as the prior, and incorporates
the interactions in a hierarchical fashion, wherein the previous layer
can be thought of as the prior for the next layer. The influence of the
prior information decreases as the number of behavioral observa-
tions increases. In addition, the regression coefficients are learned
jointly with the user’s hidden feature vector. As for prediction, the
online recommendation system replaces the user’s original profile
based fields with the user interaction fields that are inferred by the
model, thereby requiring very limited change to the underlying rec-
ommendation infrastructure.

While our proposed framework is general and applicable to any
recommendation domain, we have implemented and deployed this
system as part of the job recommendation platform in a large pro-
fessional social network. We validate the efficacy of our approach
through extensive offline experiments with different model choices
and user segments, and also using online A/B testing experiments.
Our deployment of this system as part of the job recommendation
engine has resulted in significant improvement in the quality of the
retrieved results (in terms of metrics such as VPI (views per im-
pression) and API (applications per impression)), thereby generat-
ing improved user experience and positive impact for millions of
users.

2. RELATED WORK
Context-aware recommendation systems: The notion of contex-
tual information has been extensively studied in varied disciplines
such as psychology and computer science. Bazire and Brezillon [3]
present and examine 150 different definitions of context from dif-
ferent fields. This is not surprising, given the complexity and the
multifaceted nature of the concept of context. Dourish [6] distin-
guishes between representational and interactional views of con-
text. The former view considers context as static, and describes it
in terms of a set of observable attributes that are known a priori.
The latter view treats context as dynamic, and assumes a cyclical
relationship between context and activity, where the activity gives
rise to context and the context influences activity. There has been
extensive work on defining and incorporating context in recommen-
dation systems [1, 5, 22, 27, 2, 10, 16, 30, 31, 21]. There are two
broad approaches to recommendation systems: content-based fil-
tering and collaborative filtering. Content-based filtering [20, 25]
assumes that descriptive features of an item indicate a user’s pref-
erences. Thus, a recommender system makes a decision for a user
based on the descriptive features of other items the user likes or
dislikes. Usually, the system recommends items that are similar to
what the user liked before. Collaborative filtering [11, 26, 12, 18,
29, 24, 8] on the other hand assumes that users with similar tastes
on some items may also have similar preferences on other items. In
contrast, we propose a hierarchical graphical model to incorporate
user interactions into the recommendation model. Our work can be
viewed as bringing together the representational (user profile) and
interactional (user interactions) views of context, especially in the
job recommendation setting.

Job Recommendation and Professional Social Networks: There
is extensive work on how people find jobs, how they make use of
their connections to obtain jobs, and how to match people and jobs,
spanning diverse areas such as organizational psychology and com-
puter science [9, 17, 23, 14, 15, 28]. While it is desirable to take
into account the person-environment (P-E) fit (subdivided further
into person-organization (P-O) fit, person-vocation or occupation
(P-V) fit, and person-group (P-G) or person-team fit) in addition to
person-job (P-J) fit [7, 13], we focus primarily on the person-job fit
in this paper.

3. PROBLEM SETTING
Before formally describing the hierarchical user interaction model

that we propose, we first briefly review the basics of existing rec-
ommender system that is built with logistic regression, which is a
common practice in industry due to its decent performance with
low computational complexity.

Logistic regression is widely used to solve two-class classifica-
tion problems with decent performance, e.g. predicting the proba-
bility of a user m having the observed action ym,k = 1 on item k.
We denote the feature vector between user m and item k as xm,k

and the coefficient vector as β. The probability could be estimated
based on all available features as follows:

p(ym,k = 1) =
1

1 + exp{−βTxm,k}

Assuming that the prior distribution of each model parameter is
a Gaussian centered on zero, the optimal coefficient vector β can
be learned from the training data using the maximum a posteriori
probability (MAP) estimation.

The key of building the logistic regression model with good per-
formance is to introduce valuable features. Content-based mod-
els can be implemented by introducing content-related features to
the model, including features from user profile-based fields, job
profile-based fields, user-job similarity features in content and so
on. Generally speaking, the content-related feature space is pretty
static and limited. For example, user profile-based fields include
working experience, education experience, skills and so on. Job
profile-based fields include job title, function, industry, company,
seniority, description and so on. User-job similarity features could
be similarity between any combination of user profile field or job
profile field. In addition, these features are easy to compute in both
the offline training pipeline and the online prediction stage.

A fundamental problem with content-based models is that they
are based primarily on the member’s profile. However, two mem-
bers with near identical profiles may have very different prefer-
ences for job recommendations: the first member may prefer jobs
with similar titles as her current position from a few selected com-
panies, while the second member may prefer jobs with identical ti-
tle as her current position but from a wider range of companies. The
natural solution is to introduce dynamic user interaction signals in
logistic regression model, which simulates the idea of collaborative
filtering. For example, if user m applied to job k, we should incor-
porate this signal into the model. A common practice is to introduce
ID-level regression coefficients in addition to the global regression
model in a Generalized Linear Model (GLM) setting, which is re-
ferred to as generalized linear mixed model (GLMix) [19] in the
statistics literature. In our case, we can introduce outer product be-
tween user indexm and job features, as well as job index k and user
features. The intuition is that these ID-level features could capture
job fields that are the best match for user m and user fields that are
the best match for job k.



p(ym,k = 1) =
1

1 + exp{−βTxm,k + αm
T jk + γjTum}

where β is the coefficient vector of the global regression model,
and αm and γj are the coefficient vectors specific to user m and
job k respectively.

The key challenge for such GLMix model is the high compu-
tational complexity by significantly expanding the feature space.
Imagine the scenario that we have 100M+ users and each user has
1000 non-zero coefficients on job features, this approach introduces
more than 1011 number of features to learn in the model. In prac-
tice, there are various approaches to tackle this challenge, by ap-
plying dimension reduction methods (such as feature hashing) or
applying parallelized block coordinate descent under the Bulk Syn-
chronous Parallel paradigm. While the former one reduces the ease
of interpretability of the model, the latter one requires significant
change in the recommendation infrastructure.

We address the following problem:
How do we incorporate user item interaction signals as part of

the relevance model in a large-scale personalized recommendation
system such that, (1) the ability to interpret the model and explain
the recommendations is retained, and (2) the existing infrastructure
designed for the (user profile) content-based model can be lever-
aged?

4. DIONYSIUS: A FRAMEWORK FOR MOD-
ELING HIERARCHICAL USER INTER-
ACTIONS

We next present the desiderata for addressing our problem and
the notations/preliminaries needed to describe our framework. Then,
we describe our hierarchical user interaction model, followed by
a brief overview of how we implement and deploy as part of the
large-scale recommendation system.

4.1 Desirable Properties
We first highlight the desirable properties of a framework for

modeling user item interactions in our recommendation setting:

Interpretability and explainability of recommendations: The model
should be easy to interpret, and the recommendations easy to ex-
plain.

Differential weights for different action types: Stronger interaction
types (such as applications) should be given greater weight than
weaker ones (such as views).

Graceful fallback: The model should be able to handle users with
significant interaction activity as well as users with no interaction
activity. In other words, it should gracefully fallback to the user
profile based setting when there is no interaction activity.

Infrastructure and deployment considerations: The proposed ap-
proach should not require significant change to the existing rec-
ommendation infrastructure, which is designed as a content based
recommendation system.

4.2 Preliminaries
In this paper, the key problem is to predict the probability for a

user m applying to a job k. With that information, the system can
rank all potential jobs according to the probability and recommend
top ones to user m. The following notations are used in the paper.

• m = 1, 2, ...,M : the index of the user.

• k = 1, 2, ..., N : the index of the job.

• yv,m,k: the binary label that indicates the user’s viewing be-
havior for job k. If yv,m,k = 1, it indicates that the user m
clicks to view job k. Otherwise yv,m,k = −1.

• ya,m,k: the binary label that indicates the user’s application
behavior for job k. If ya,m,k = 1, it indicates that the user
m clicks to apply to job k. Otherwise ya,m,k = −1.

• up,m: the vector of profile-based fields associated with user
m. The vector includes static demographic features that are
derived from the user profile information.

• uv,m: the vector of view-based fields associated with user
m. The vector is tuned according to the user’s viewing be-
havior.

• ua,m: the vector of application-based fields associated with
user m. The vector is tuned according to the user’s applica-
tion behavior.

• jk: the vector of fields associated with job k. The vector
includes static features that are derived from the job descrip-
tion.

• xm,k: the feature vector that is associated with the user m
profile and job k. It might include user profile-based fields
up,m, job profile-based fields jk, and similarity-based fea-
tures between user profile-based fields up,m and job profile-
based fields jk.

• D = {D1, ..., Dm, ..., DM}: The observed data of all users.

• Dm = {yv,m,k, ya,m,k,up,m, jk}: A set of observed data
associated with user m. Each observation is associated with
four parts: the user viewing behavior, the user application
behavior, the user profile-based fields, and the job fields .

• βv: the d-dimensional vector of regression coefficients to
predict the user’s viewing behavior yv,m,k.

• βa: the d-dimensional vector of regression coefficients to
predict the user’s application behavior ya,m,k.

• σv: variance of the user view-based feature vector uv,m.

• σa: variance of the user application-based feature vector ua,m.

4.3 Description of Hierarchical User Interac-
tion Model

We propose a hierarchical graphical model to incorporate user
interactions into job recommendations. Instead of introducing ID-
level regression coefficients, we learn the user hidden feature vector
by considering their interaction signals (job views, applications). In
the global regression model, we replace the user profile-based vec-
tor with the user hidden feature vector, thereby not expanding the
feature space at all. It allows the use of existing infrastructure that
supports content-based features. The user hidden feature vector is
learned based on their job viewing and applying behavior as well
as other explicit positive/negative feedbacks on the recommended
jobs. The intuition underlying our model is that there is a hierarchy
in the strength of user activity: job application > job view. Note that
we describe our model with two types of user behaviors while it is
straight-forward to add other types of interactions (such as saving
a job) in the model as an additional layer in the hierarchy.

Let’s go through the model by each component.



Model parameters . The first component specifies the parame-
ter likelihood in the model. In particular, βv is the coef-
ficient vector for regression model which predicts the user
viewing behavior. βa is the coefficient vector for regression
model which predicts the user applying behavior. σv controls
the variance of the distribution where user view-based fields
uv,m is drawn from. σa controls the variance of the distribu-
tion where user application-based fields ua,m is drawn from.

We assume that parameters are sampled from a Gaussian dis-
tribution. In details,

βv ∼ N(µβv , σβv ) (1)
βa ∼ N(µβa , σβa)

σv ∼ N(µσv , σσv )

σa ∼ N(µσa , σσa)

For easier interpretation, we denote
φ = (µβv , σβv , µβa , σβa , µσv , σσv , µσa , σσa)

User feature vector . The second component specifies the likeli-
hood of the user feature vector. up,m, i.e., the user profile-
based fields, is extracted from the user static profile. We as-
sume that uv,m, i.e., the user view-based fields, follows the
Gaussian distribution with up,m as mean and σv as variance.
Similarly, we assume that ua,m, i.e., the user application-
based fields, follows the Gaussian distribution with uv,m as
mean and σa as variance.

uv,m ∼ N(up,m, σv) (2)
ua,m ∼ N(uv,m, σa)

In practice, σv and σa could be tuned manually to control
the weight of the prior fields that come from the user profile.
The higher the variance σv , the less important the user pro-
file fields up,m are. It indicates that the model gives more
weight to the user viewing behavior and cares less about the
user original profile. Similarly as for the user application be-
havior.

User interaction signal . The third component specifies the like-
lihood of the user interaction signal. In the former one, the
user viewing behavior yv,m,k is dependent on the user view-
based vector uv,m and the regression model βv . In the latter
one, the user application behavior ya,m,k is dependent on the
user application based vector ua,m and the regression model
βa. We use logistic regression as the core model to predict
user action.

p(yv,m,k|uv,m, βv) =
1

1 + exp(−yv,m,k(βvT f(jk,uv,m)))
(3)

p(ya,m,k|ua,m, βa) =
1

1 + exp(−ya,m,k(βaT f(jk,ua,m)))

Assuming that the data is independently and identically distributed,
we can present the data likelihood as:

Figure 1: Illustration of dependencies of variables in the hier-
archical user interaction model. It shows the observed dataset
of user m, i.e., Dm = {yv,m,k, ya,m,k,up,m, jk}. All variables
in shades are observed ones while others are hidden variables in
the model. As shown in the plot, the user view-based fields uv,m
is drawn from distribution of user profile-based fields up,m and
variance σv . Similarly, the user application-based fields ua,m
is drawn from distribution of user view-based fields uv,m and
variance σa. The user view behavior yv,m,k is dependent on the
regression model βv , the job fields jk and the user view-based
fields uv,m. Similarly, the user application behavior yv,m,k is
dependent on the regression model βa, the job fields jk and the
user view-based fields ua,m.

p(D|φ) =
∫
p(D, θg|φ)dθg (4)

=

∫
p(D|θg, φ)p(θg|φ)dθg

=

∫
[

M∏
m=1

p(ym|θg, φ)]p(θg|φ)dθg

where θg = (βa, βv, σa, σv) is a random variable denoting the
joint distribution of the global random variables.

In particular, the data likelihood for user m can be presented as

p(ym|θg, φ) =
∫
p(ym|θm, θg, φ)p(θm|θg, φ)dθm, (5)

p(ym|θm, θg, φ)p(θm|θg, φ) =
Km∏
k=1

[p(yv,m,k|uv,m, βv)p(ya,m,k|ua,m, βa)]

(6)

p(ua,m|uv,m, σa)p(uv,m|σv)

where θm = (uv,m,ua,m) is a random variable denoting the
joint distribution of the view based vector and application based
vector random variables for each user m.

Maximizing the likelihood of p(D|φ) is equivalent to maximiz-
ing the log likelihood, L(D|φ) = ln p(D|φ).



There is no known closed-form solution for the estimation of
model parameters. We follow the Bayesian method [4] to derive an
Expectation-Maximization (EM) based iterative process to find an
approximate solution. In the E step, we fix the regression model
and tune the user interaction-based vector. In the M step, we fix
the user interaction-based vector and learn the regression model
accordingly. The iterative process converges when there is minimal
change in regression model coefficients and user interaction-based
vectors.

Thus, our proposed approach can be summarized as follows:

• We propose a hierarchical graphical model to incorporate
user interactions into the recommendation model.

• The user hidden feature vector is learned based on the user’s
job viewing behavior and job applying behavior.

• Three layers of user information would be leveraged hierar-
chically in the recommendation stage, including the user’s
profile, user’s viewing behavior, and the user’s applying be-
havior. The previous layer would act as the prior for the next
layer. The influence of the prior information decreases as the
number of behavior observations increases.

• The regression coefficients are learned jointly with the user’s
hidden feature vector.

4.4 Implementation and Deployment as part
of the Recommendation System

We next briefly describe the overall design and architecture of
the recommendation system deployed at a large professional social
network, focusing on how we implement and deploy our frame-
work for modeling hierarchical user item interactions as part of the
existing recommendation system infrastructure.

4.4.1 Offline System for Generating and Incorporat-
ing User Item Interaction Model

In the offline system, the interaction based fields vectors for users
are generated and pushed to an interaction store (a distributed key
value store) through the following steps:

1. Train the hierarchical user interaction model using the user’s
interactions and store the regression coefficients for predic-
tion.

2. Use the trained user interaction model and the user’s interac-
tions in the last N days to predict the user’s interaction based
hidden vector (this is updated periodically).

3. Push the user’s interaction based fields vector to a distributed
key value store so that it can be retrieved by the online sys-
tem.

4.4.2 Online Query Processing and Recommenda-
tion System

In the online component, the following steps take place after a
call to the recommendation service is made for a user:

1. Use the user id to fetch user’s interaction based fields vector
from the interaction store (the data is pushed to this store
from the offline system).

2. If this hidden vector is missing (e.g., for users with no inter-
actions), substitute with the (content-based) user fields vector
from the member store.

Figure 2: Histogram of user interaction in the dataset. In all
three plots, y axis corresponds to Log(number of users). x axis
in three plots corresponds to number of views, number of ap-
plies and application rate. Exact number is omitted for busi-
ness concern.

3. Form the query based on the user fields, and query against
an inverted index system (e.g., Lucene) of items to retrieve a
candidate set of items to score.

4. Score the candidates using a machine learned model (e.g.,
based on logistic regression) and return the ranked list of
items.

5. EXPERIMENTS

5.1 Research Questions
As described before, the hierarchical user interaction model could

be applied to any domain. Without loss of generality, we evaluate
it in the job recommendation domain here. In the experiment, We
consider two popular user interactions, including job views and job

Table 1: Models to compare
Model User interaction signal hierarchy or not

M-baseline None None
M-view job views None
M-apply job applications None

M-viewApply job views, job applications Hierarchical model



applications. In the professional social network, summaries of job
vacancy postings are shown to the user. We call this an impression
(each job vacancy summary shown to the user is considered to be
impressed). Job seekers can open a new page to view the entire
job description, which we call as a view action. In addition, users
will apply to the job if they wish to be considered for the position,
which we call as an apply action.

We first list all research questions, followed by the experimental
setup, data analysis and performance analysis. To show the effec-
tiveness of the hierarchical user interaction model, we design our
experiments to answer the following research questions:

• Is it helpful to consider signals from user interactions in the
model? How much lift do these signals have in terms of the
overall recommendation performance?

• Is it helpful to incorporate different types of user interaction
signals in a hierarchical way?

• How is the performance comparison for different user seg-
ments?

5.2 Evaluation Metrics
We used both offline and online measures to quantify the effec-

tiveness of the hierarchical user interaction models.
In the offline evaluation, we compute the area under receiver op-

erating characteristic curve (ROC AUC), which represents the qual-
ity of the item recommendation system (viewed as a binary classi-
fier). A (user, job) pair is labeled as a positive example if the user
applies to the job during the evaluation period, and as a negative
example otherwise. The ROC curve is obtained by plotting the true
positive rate (recall) against the false positive rate at various choices
of the threshold in the recommendation model. ROC AUC can be
interpreted as the probability that the binary classifier will rank a
randomly chosen positive instance higher than a randomly chosen
negative instance.

In the online evaluation, we use the following two business met-
rics: (1) the job view rate (VPI), which is defined as the ratio of the
number of jobs viewed by users to the number of job impressions
(number of jobs presented to users); (2) the job application rate
(API), which is defined as the ratio of the number of jobs applied
to by users to the number of job impressions. Higher job view and
application rates correspond to more relevant jobs being shown to
users, and hence are desirable. We also present the number of im-
pressions, the number of views, and the number of applications.
For all of these metrics, we report only the relative change between
two models, and omit the absolute numbers due to business con-
cerns.

5.3 Models to Compare
In our experiments, we compare the basic regression model, as

well as the hierarchical user interaction model with different com-
ponents. As shown in Table 1, M-baseline is the basic regression
model with no user interaction signals. M-view is the user interac-
tion model with viewing behavior. M-apply is the user interaction
model with application behavior. M-viewApply is the hierarchical
user interaction model with both user viewing behavior and appli-
cation behavior.

All models use the same set of features for the core regression
model. Features include those that are extracted from the user
profile-based fields (current title, current industry, and so on) and
those extracted from the job fields (job title, company, skills and
so on), as well as similarity features between user fields and job
fields. Extensive feature engineering could be explored to improve
the model performance, which is beyond the scope of this paper.

5.4 Dataset
As mentioned earlier in the paper, we apply our model in the

context of a job recommender system and use a real-world dataset
from a professional social network to evaluate our models.

5.4.1 Training Stage
In the model training stage, we used two sets of dataset, one for

tuning user interaction-based fields and another one for training the
logistic regression model.

Training: dataset for tuning user interaction-based fields We first
collect the data to tune user interaction-based fields if a user
viewed a job or applied to a job from 2016/01/01 to 2016/01/09.
This sample data contains millions of users that applied to a
reasonable number of jobs in that period 1. Histograms of
user interactions are demonstrated in Figure . As presented
in the figure, the distribution of both user views and appli-
cations follow the power law distribution, which indicates
that a few users who applied to or viewed a lot jobs while
majority of users who applied to/view only a few jobs. In
Figure , we also show the histogram of application rate, i.e.,
# of applications divided by # of views. There are two peaks
in the plot, which corresponds to users who didn’t apply to
any jobs that they viewed and users who applied to almost
all jobs that they viewed. In the performance analysis, we
evaluate the performance of models on these different user
segments.

Training: dataset for training logistic regression model We then
collect the dataset to learn the logistic regression model with
the user interaction-based fields. if a user applied to a job
from 2016/01/10 to 2016/01/15, we collect the data as a pos-
itive label. If a user viewed or applied to job at position k,
we collect all recommendations from position 0 to position
k− 1 as negative label. In addition, we random sample from
all jobs that have been applied on a particular day as random
negative data to simulate the real-world scenario. For exam-
ple, if user m applied to jobs on 2016/01/11, we collected
all jobs that have been applied by other users on that day
and removed jobs that were applied by user m. We random
sampled from this set as random negative labels for user m.

5.4.2 Testing Stage
In the model testing stage, we used two sets of dataset, one for

learning user interaction fields and another one for making recom-
mendations.

Testing: dataset for learning user interaction fields We first col-
lect user interactions from 2016/01/16 to 2016/01/25 to learn
the user interaction-based fields. During the performance
analysis, we segment users into different groups based on
their interaction in this time period. In details, users are put
into five segments, high APP high APV, high APP low APV,
zero APP high View, zero APP low View, zero APP and zero
View. high APP corresponds to users with at least 1 appli-
cation while zero APP corresponds to users with no applica-
tions. high APV corresponds to users with higher application
per view rate while low APV corresponds to users with lower
application per view rate. high View corresponds to users
with higher number of views. low View corresponds to users
with lower number of views while zero View corresponds to
users with no views. Higher application per view rate is cho-
sen based on 75% percentile.

1Exact number is omitted for business concern



Testing: dataset for making recommendations We collect user ap-
plication data from 2016/01/26 to 2016/01/30. The positive
data and negative data are labeled similarly as we did in the
training stage. All user interaction-based fields that are learnt
in the last step were used here in the recommendation stage,
along with the regression model that is learnt in the training
stage. Note that if the user doesn’t have any interaction in
the last step, user interaction-based fields would fall back as
his profile-based fields.

5.5 Offline Evaluation
We present the performance of different models in Table 3.

5.5.1 User interaction model VS Non-user interac-
tion model

The very basic question is whether the user interaction model
does provide better performance by considering signals from the
users’ interactions. It is not surprising that we do see significantly
better performance from models that leverage user interactions,
compared to the baseline model with no interactions M-baseline.
In addition, we observe a better overall performance of model M-
apply, compared with M-view. It indicates that the users past ap-
plication behavior gives more reliable signals of users job-seeking
intention in the future.

In Table , we show a real example of user profile, his interactions
and recommendations from each model. As shown in the table, this
user currently works as Business Analyst and viewed jobs with ti-
tle Software Engineer, Product Manager, Business Analyst. Some
jobs that he viewed match with his profile information yet not all
of them. Among all jobs that he viewed, he chose the apply to jobs
with title Product Manager, Business Analyst. Based on this infor-
mation, the baseline model M-baseline recommends jobs with title
similar to Business Analyst that match with his profile information.
It didn’t consider the member’s job seeking intention in Software
Engineer or Product Manager. On the other hand, the user inter-
action model successfully incorporated the user interaction signals
in the recommendations. M-view recommends jobs that are con-
sistent with his viewing behavior while M-apply recommends jobs
that are consistent with his application behavior. The hierarchical
model M-viewApply considers signals from both types of inter-
actions and make recommendations. Note that the actual recom-
mendations from M-view and M-viewApply are different although
they share the same job title. Job details are not shown here due to
privacy concerns.

5.5.2 Active users VS Passive users
When we compare the performance of all user interaction models

for all the users, the M-viewApply performs significantly better
than the M-baseline. However, in order to truly understand each
model’s prediction power, we analyze their performance on four
user segments, high APP high APV, high APP low APV, zero APP
high APV, and zero APP low APV.

In the first segment for users with high APP high APV, it cor-
responds to users with lots of job views and job applications. All
user interaction models perform significantly better than the base-
line model. In addition, M-viewApply performs better than M-
apply which is better than M-view. It demonstrates the effect of
using a hierarchical model M-viewApply that incorporates differ-
ent types of user interactions in making recommendations.

In the second segment for users with high APP low APV, it cor-
responds to users with lots of job views and low number of applica-
tions. In this case, M-view performs better than M-apply since it

incorporates more signals from the user viewing history. Interest-
ingly we observe a better performance of M-viewApply, compared
with M-view. The difference is triggered by the different regression
model that are learnt in these two models.

In the third and fourth segment for users with zero App and at
least 1 views, it corresponds to users with at least 1 job views and
no applications. On the one hand, we observe same performance of
M-apply and M-baseline since no user application signal has been
incorporated in the M-apply model. On the other hand, M-view
is slightly better than M-baseline while M-view-apply is signifi-
cantly better than the baseline.

In the last segment for users with zero App zero View, it corre-
sponds to users with no interactions in the prediction stage. We
observe significantly better performance from all user interaction
models, compared with the baseline model M-baseline. It indicates
that the regression model learnt in the user interaction model has
better prediction power than the baseline model, which is trained
without considering user interactions.

5.6 Online Evaluation

5.6.1 Online A/B Testing Setup
In the online A/B testing, we evaluate the performance of rec-

ommender systems with real-world users on a professional social
network. We randomly select 5% users that visit the site for each
model and present the corresponding recommendations to each user
group. The difference of the performance between two user buck-
ets are reported in the performance analysis. A significance level of
0.05 with the paired two-tailed t-test is used to compare two mod-
els. We let each model to run for one week to burn in the novelty
effect (active job seekers tend to apply to any new jobs they see
due to a change in the recommendation model) and report the com-
parison of the performance of the models in the subsequent time
period.

5.6.2 Results from Online Experiments
We observed the following results in the online A/B testing, com-

paring the model M-viewApply against the baseline: API: +3.6%
and VPI: +3.5%. Further, we presented 4.1% more impressions,
with 7.7% more views and 7.8% more applications. Not surpris-
ingly, it is clear that the model M-viewApply performs signifi-
cantly better than the baseline by incorporating user interaction sig-
nals. All key metrics, including # of applications and # of views are
improved around 7% while the corresponding API and VPI are im-
proved by around 3%. It indicates that the model M-viewApply
learns the user’s true job seeking intention from their previous in-
teraction signals, which might be different by the user profile.

6. CONCLUSION AND FUTURE WORK
We proposed Dionysius, a hierarchical graphical model based

framework for incorporating user interactions into recommender
systems. Our framework enables the incorporation of user item
interaction signals as part of the relevance model in a large-scale
personalized recommendation system, with minimal change to the
existing recommendation infrastructure, while retaining the ability
to interpret the model and explain the recommendations. As part of
our proposed model, we learned a hidden fields vector for each user
by considering the hierarchy of interaction signals, and replaced
the user profile based vector with this learned vector, thereby not
expanding the feature space at all. Our implementation and deploy-
ment of this system as part of the job recommendation platform in
a large professional social network demonstrated the efficacy and
practicality of our framework, and has also resulted in significant



Table 2: Example of user profile, his activities and recommendations from each model. For privacy concerns, only the job title has
been shown in the table. Note that jobs with the same title might refer to different unique jobs.

User Profile Title Business Analyst
Jobs that are viewed by the user Software Engineer, Product Manager, Business Analyst
Jobs that are applied by the user Product Manager, Business Analyst

M-baseline Business Analyst, Consultant - Business Intelligence and Business Analytics, Data Analyst
M-view Business Analyst, Product Manager, Software Engineer
M-apply Business Analyst, Product Manager, Product Manager

M-viewApply Business Analyst, Product Manager, Software Engineer

Table 3: Offline ROC AUC analysis on different models and user segments. Users are segmented into five segments, high APP high
APV, high APP low APV, zero APP high View, zero APP low View, zero APP and zero View. high APP corresponds to users with at
least 1 application while zero APP corresponds to users with no applications. high APV corresponds to users with higher application
per view rate while low APV corresponds to users with lower application per view rate. high View corresponds to users with higher
number of views. low View corresponds to users with lower number of views while zero View corresponds to users with no views.

all users high App, high APV high App, low APV zero App, high View zero App, low View zero App, zero View
M-baseline 0.612 0.612 0.571 0.602 0.604 0.618

M-view 0.638 (+4.2%) 0.663 0.604 0.606 0.619 0.669
M-apply 0.643 (+5.1%) 0.673 0.603 0.603 0.605 0.675

M-viewApply 0.644 (+5.2%) 0.682 0.606 0.612 0.623 0.677

improvement in the quality of the recommendation results for mil-
lions of users.

In future, we plan to extend and apply this framework for the
items, that is, incorporate the signals from users that interacted
(e.g., viewed/applied to a job) with the item to enhance the repre-
sentation of the item in a hierarchical fashion, wherein the strength
of the interaction is factored in. Another fruitful direction to pur-
sue is to apply our framework for associations beyond interactions
based on relationship in the structured fields. For example, in the
job recommendation application, we can take into account jobs that
have the same title as the user, jobs that have the same title and
skills as the user, and so on, and apply the hierarchical model to
enhance the representation for new users or those with no interac-
tion activity. Likewise, we can apply such association to enhance
the representation for new jobs or those with views or applications
from users.
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