
Moolle: Fan-out Control for Scalable Distributed
Data Stores

SungJu Cho∗, Andrew Carter∗, Joshua Ehrlich† and Jane Alam Jan∗
∗LinkedIn Corp

2029 Stierlin Ct. Mountain View, California 94043-4655
Email: sungjuc73@gmail.com, acarter@linkedin.com, jan876@gmail.com

†WePay, Inc.
350 Convention Way Redwood City, California 94063

Email: ehrlichjoshua@gmail.com

Abstract—Many Online Social Networks horizontally partition
data across data stores. This allows the addition of server nodes to
increase capacity and throughput. For single key lookup queries
such as computing a member’s 1st degree connections, clients
need to generate only one request to one data store. However,
for multi key lookup queries such as computing a 2nd degree
network, clients need to generate multiple requests to multiple
data stores. The number of requests to fulfill the multi key lookup
queries grows in relation to the number of partitions. Increasing
the number of server nodes in order to increase capacity also
increases the number of requests between the client and data
stores. This may increase the latency of the query response time
because of network congestion, tail-latency, and CPU bounding.
Replication based partitioning strategies can reduce the number
of requests in the multi key lookup queries. However, reducing
the number of requests in a query can degrade the performance
of certain queries where processing, computing, and filtering can
be done by the data stores. A better system would provide the
capability of controlling the number of requests in a query. This
paper presents Moolle, a system of controlling the number of
requests in queries to scalable distributed data stores. Moolle has
been implemented in the LinkedIn distributed graph service that
serves hundreds of thousands of social graph traversal queries
per second. We believe that Moolle can be applied to other
distributed systems that handle distributed data processing with
a high volume of variable-sized requests.

I. INTRODUCTION

A. Background

Large-scale online data services in industry have widely
adopted distributed data systems as a way to deliver fast
response time, scalability, and fault tolerance. Systems such
as Memcached[6] have shown that distributed in-memory key-
value stores have lower latency for single key lookup queries
than monolithic disk based stores.

The most popular data partitioning strategy in distributed
data systems is hash based horizontal partitioning because
it is easy to scale up and simple to manage. The pseudo-
random hash function used in the partitioning achieves even
data distribution across multiple data stores and the location
of data can be determined without mapping table or routing
information. New data is simple to add because its location
is already determined by the hash function. The hash based
horizontally partitioned distributed data service can process a
single key lookup query efficiently because a single partition
can process the query. For example, to process a member’s 1st

degree (hop) connections lookup query, the query processor
fetches the connection data from a single partition.

Processing multi key lookup queries under the horizontal
partitioning is not as efficient as single key lookup queries
because the query typically requires fetching data from mul-
tiple partitions. For example, consider a multi key look up
query that fetches a member’s 2nd degree connections, the
union of the member’s 1st degree connections’ 1st degree
connections. In the 2nd degree connections look up query,
data from many partitions is needed because the member’s 1st
degree connections are randomly distributed. For users with
large 1st degree connections, there is a high probability that
data from all partitions will be needed. The large number of
fan-out requests in the query can cause issues such as network
congestion, tail-latency, and CPU-bounding.

Tail-latency[5] refers to the problem that occurs when the
processing time of a query issuing a large number of fan-out
requests is dominated by the longest response time among the
fan-out requests. Among the participating partitions, even one
poorly performing partition is enough to cause a significant
increase in the query response time. This issue is difficult to
resolve but common in distributed data services in industry.
In most production data store nodes, each data store contains
various additional processes for maintenance and monitoring
purpose. Those supplementary processes may temporarily have
a negative impact on the query performance. For example,
a log transfer process can block the query processing work
by disturbing operating system’s file system cache whenever
it deletes large log files after transferring. Garbage collection
activities in JVM applications can cause sudden increases of
response time for the data store partition that are hard to
control or predict. The larger the number of fan-out requests,
the higher the probability of requesting from a partition with
temporary slow performance.

CPU-bounding is also known as Multiget Hole[8] problem.
When the overhead of processing the network stack is com-
parable (or dwarfs) the processing costs of the query, a large
number of fan-out requests can increase the load on the CPU.
Adding more data-partitions to scale horizontally increases the
required CPU power per query by increasing the number of
fan-out requests in a single query. If the CPU-bounding issue
starts, requests and responses will wait in a processing queue;
this will significantly increase the processing time of most
queries.

Past research has attempted to address these issues of
horizontal partitioning by reducing the number of fan-out re-
quests. One notable direction is a fine-grained partitioning[2],
[4], [12] scheme that generates partitions optimizing data
locality. High data locality enables the multi key lookup query
processing to minimize the number of fan-out requests using
just a single partition or a small number of partitions. For
example, a partitioning using a community detection algorithm
will partition a member’s data with high data locality such
that the data for a member’s 2nd degree network would be
stored on a single partition. In this case the fan-out problem
disappears as a single node can serve the request. Due to the
huge computational overhead of construction and maintenance,
the fine-grained partitioning has not been widely adopted to the
ever-changing data such as Online Social Networks.

Another notable solution to the horizontal partitioning
issues is to minimize the number of partitions participating
in a query processing using the set cover based algorithm
and data replication[14], [16]. From the data replication, each
partition contains different set of data such that the set cover
based routing algorithm effectively selects the minimal set of
partitions. The approach effectively solves the scalability and
tail-latency issues by reducing the amount of fan-out using a
relatively simple partitioning strategy. Because the minimal set
of partitions computation is a NP complete problem[7], most
practical implementations use the greedy set cover approxi-
mation. The greedy nature of the routing algorithm makes it
difficult to control the number of the participating data stores. It
always attempts to select the minimal set of data stores for the
set of partitions. This limitation is not suitable to process some
queries that require more participating data stores in order to
distribute computational and processing load.

We believe that distributed data services should have the
ability to control the number of fan-out requests in a query
processing because industry applications need to handle a
diverse workload. The query processor should be able to
selectively determine and control the number of data store
nodes based on each query’s processing characteristics and
global performance related statistics. It should be able to select
the minimal set of partitions to process small multi key lookup
queries, and also select maximal set of data store nodes to
process CPU intensive queries. Furthermore if all the data store
nodes have a high number requests, the query processor should
be able to reduce the number of requests for incoming queries.
Thus, we are motivated to design a system that can handle
these types of queries by controlling the number of fan-out
requests per query basis.

B. Terminology

In this paper we will use following terminology:

• Partition: a division of data divided by a partitioning
strategy

• Data store node: a physical server machine. One data
store node can have multiple partitions.

• Client node: the physical machine handling incoming
queries and dispatching requests to data store nodes.

• Query: request issued by applications and handled by
the client.

• Request: the request issued by the client and handled
by the data store node.

• Query processor: application that handles incoming
queries. Both client and data store nodes have query
processors.

• Fan-out requests: the requests issued by a client node
to process an incoming query.

• Fan-out control: a process to determine the number of
fan-out requests.

• Routing table: contains the key/partition and parti-
tion/data store node mapping information.

• Queries Per Second (QPS): the number of incoming
queries to a client node per second.

• Requests Per Second (RPS): the number of dispatch-
ing requests from a client node per second.

C. Our Contributions

In this paper, we present Moolle, a per query basis data
processing system that can control the number of data store
nodes that participate in the processing of a query while using
a simple hash-based horizontal partitioning and replication.
Moolle consists of replicated data store nodes and a client side
load balancer. The load balancer can limit the number of data
stores participating in the process of an incoming query using a
limiting parameter provided by query processing applications.
This allows the query processor to find a better balance
between reducing server side computation and reducing client
side computation. Moolle provides API options to specify the
degree of fan-out requests to query processor.

While Moolle is not an intelligent query processing system
that determines an optimal fan-out strategy in distributed data
services, it allows programmers to implement the intelligent
query processors. The query processors utilize a knob to
control fan-out requests on a per query basis, which allows
applications to optimize the entire system to meet its objectives
such as per query performance and global data store stability
optimization.

We believe that Moolle is the first general-purpose dis-
tributed data system that provides the ability to control the
fan-out of requests on a per query basis while considering
the global state of the distributed data system. We have
implemented this system as part of the LinkedIn’s Norbert [11]
open source project. We are using this system in the production
distributed graph service at LinkedIn. With Moolle controlling
the fan-out of requests between clients and data store nodes in
our system we have decreased the average and 99th percentile
response time of requests between client’s node and data store
nodes by around 40%. Additionally, the graph service can
limit the requests per second (RPS) based on the growth of
the incoming queries per second (QPS) to avoid increasing
queuing time, which enhances the scalability of system by
preventing CPU-bounding. While this paper focuses on Online
Social Networks and our Distribute Graph Service, we believe
that other systems would benefit from the same fan-out control
mechanisms.

In Section II, we detail LinkedIn’s distributed data service
architecture, which inspired Moolle design. In Section III,

we discuss the important design aspects such as partition-
ing/replication strategy, fan-out control load balancer and fan-
out controller. In Section IV, we present the analysis of the la-
tency, QPS and RPS in the distributed query processing. These
are important aspects that influenced our Moolle based fan-out
controller designs. In Section V, we highlight the important
aspects of Moolle based on simulation results, and summarized
the contributions to the LinkedIn production system. In Section
VI, we discuss related works.

II. LINKEDIN DISTRIBUTED GRAPH SERVICE

Fig. 1. Examples of a search result page and size of user’s network in
LinkedIn. The distance badge in search result supports up to 3 degrees (”You”
means distance 0).

LinkedIn is the largest professional social network with
more than 400 million members. The power of LinkedIn is
derived from the insights that can be computed about each
member’s network. For example, as shown in the Fig. 1, when
searching on the LinkedIn site, users are able to see how many
degrees, up to 3, away other users are. Additionally LinkedIn
displays the size of a user’s direct connections, as well as how
many professionals are in the user’s network. At LinkedIn,
these metrics are computed online using our distributed graph
service. The distributed graph service allows other services
at LinkedIn to perform graph operations such as retrieving
a member’s connections, computing common connections,
calculating distance between members, and computing the
size of a member’s network. Although these operations are
relatively simple graph operations, the immense scale at which
these operations must be done makes them complicated.

Besides the connections among members, the member’s
network also contains other edge types including employments,
educations, job titles, skills, LinkedIn groups, following rela-
tionships, etc. The distributed graph service handles hundreds
of thousands of queries per second and scales to hundreds of
millions of nodes and tens of billions of edges.

A. Architecture

The Fig. 2 shows the LinkedIn graph service architec-
ture. GraphDB is an in-memory key-value store based graph
database, which requires partitioning the entire graph data
into multiple GraphDB instances. The Graph API Service is
a stateless query-processing layer that handles all incoming
queries to the graph service. We provide SQL similar Graph
Query Language (GQL) to allow graph service users to retrieve
data from the social network in a flexible manner. Both
GraphDB and the Graph API service support GQL query
processing. The Graph API Service receives GQL queries from
graph service users, parses the GQL query, and then executes
the query and returns a result set to the caller by fetching data
from Graph DB. GraphDB also uses GQL query engine, which

Fig. 2. The LinkedIn distributed graph service architecture consists of three
major subsystems: GraphDB, NCS, and API layer. GraphDB is a horizontally
partitioned key-value store for members’ edges. NCS serves requests requiring
a member’s 2nd degree network. The API layer can send simple requests
directly to GraphDB if they don’t require the 2nd degree network or route
more complicated requests to NCS.

enables efficient query processing by balancing data operations
between the Graph API Service and GraphDB.

The Network Cache Service (NCS) maintains a cache
of members’ 2nd degree network, and provides specialized
graph service such as computing a member’s network, dis-
tance badging, path finding, and calculating network size.
The computation of a member’s 2nd degree network has high
processing cost because the query must fan-out requests to
many GraphDB partitions. For many members, the member’s
1st degree network size is large enough that the member’s 1st

degree connections are scattered in all partitions. Therefore,
the Graph API Service delegates the processing of these high
cost queries that need 2nd degree network to NCS. Due to the
high frequency of these specialized service calls, NCS has a
cache hit ration over 95%.

B. Data Partitioning/Replication

GraphDB uses a hash-based horizontal partitioning strategy
where the key is the hash value of graph node’s ID. In the
partitioning, the number of partitions is much larger than the
number of data store nodes and each node serves multiple
partitions. This allows us to easily add more GraphDB nodes
by reassigning subsets of partitions instead of repartitioning
the entire dataset.

This approach needs a routing table containing the mapping
information between partitions and GraphDB nodes, however
the routing table has negligible memory overhead because the
number of partitions is small relative to the number of nodes in
the graph. To provide scalability and resiliency, we replicate a
set of GraphDB nodes, which is called GraphDB cluster. Each
cluster contains a complete set of all partitions. This approach
allows maintenance operations without service interruptions.

For the purpose of maintenance operations such as software
update or adding more GraphDB, one cluster can be safely
taken out of service because the remaining clusters can handle
any incoming queries.

We use ZooKeeper[9] to store the routing table contain-
ing the partition to GraphDB node mapping information.
Whenever the routing table is updated, ZooKeeper broadcasts
the changes to all clients including GraphAPIs, NCS and

GraphDB. In each client node, Norbert maintains the routing
table by listening the update events from ZooKeeper. Norbert
performs client-side load balancing by using a round-robin
mechanism. The routing table has partition id as the key and
the set of GraphDB node as the value. Since each cluster
has only one GraphDB data store node per partition, the size
of the value set is the number of clusters. The round-robin
load balancer uses queues to stores the set of GraphDB nodes
per partition. Per incoming query, the load balancer computes
the partitions and chooses GraphDB nodes from the head of
each partition queue. After finishing this process, the selected
GraphDB nodes are returned to the tail of each partition queue.

C. Graph Query Types

The LinkedIn graph service supports various graph retrieval
queries that we categorized into three types based on the
processing requirements. The first type are single key lookup
queries that need data from only a single GraphDB node
Typical single key lookup queries are computing a member’s
1st degree network, the schools a member attended, and/or the
companies the member worked at. Graph APIs can generate a
single request to a single GraphDB node to fulfill these queries.

The second type are multi key lookup queries that need
data from multiple GraphDB nodes. The specialized services
in NCS - network sizes, path-finding, and distance badging
queries - leverages a member’s 2nd degree network, and
computing the 2nd degree network requires multiple GraphDB
nodes. The 2nd degree network consists of two sorted set:
1st hop members and 2nd hop members sorted by member
ID. To compute the 2nd degree network we first fetch the
members 1st degree and then request the 1st degrees of all of
the 1st degree connections and union the results. NCS makes
fan-out requests to multiple GraphDB nodes concurrently and
merges the results together into one sorted set. In LinkedIn’s
professional social graph, most active member’s 1st degree
network size is large enough to require fan-out requests to
almost every GraphDB nodes.

The last type is common entity queries that perform in-
tersection operations on multiple sets. This is similar to the
keyword search query done by inverted indexes. For example,
to find the common members connected to two given members,
an intersection operation should be performed on the members’
1st degree network. One option of processing this query is that
a client fetches the two members’ 1st degree networks and
computes the intersection on the client node.

Another option is that the client distributes the query to
every GraphDB data node and each performs a partial inter-
section using per-partition inverted indexes mapping value (1st
hop member) to key (member). If the size of each member’s
1st degree networks is sufficiently large, the latter option is
better because it reduces the network transfer overhead and
allows distributed computation. For this option, the larger the
fan-out the more efficient the query is because each request
workload and response size is smaller.

In our distributed graph services, incoming queries consists
of single key, multi key look up and common entity queries
with the portion of 40%, 40%, and 20% respectively.

D. Issues and Motivations

Due to the fast growth rate of LinkedIn’s professional social
network, scalability has been a key focus of our distributed
graph service. To meet the increasing incoming QPS and
data size, we have added more clusters and GraphDB nodes.
This scales the single key lookup queries and common entity
queries. However, as we continuously add more clusters, multi
key lookup queries generate large enough fan-out to cause the
multiget hole problem. Once the multiget hole problem starts
to dominate, the client average query processing time increases
due to queuing time.

To address this, [16] implemented a set cover algorithm
based routing strategy to minimize the fan-out. This effectively
reduces the amount of fan-out per query, but the greedy nature
of the algorithm gives unbalanced data processing overhead to
the early selected GraphDB nodes during the greedy set cover
iterations. The fully overloaded nodes make the tail-latency
issues even worse. Various fine-grained partitioning strategies
have been considered to mitigate the multiget hole issue with
hope that removing the fan-out request in the multi key query
processing. However, finding well-balanced partition with a
minimal edge cut is difficult. Even if we find an effective
partitioning strategy, keeping the minimal edge cut status in
our ever-changing Online Social Network is very expensive.

Given these limitations, we believe that the hash based
horizontal partitioning is the best option. Thus, Moolle is
motivated by the two important factors: capability to control
fan-out requests between client and data store nodes on a per
query basis in order that we can fan-out less in the process of
multi key lookup queries and fan-out more in the process of
common entity type queries, and the ability to us a simple
partitioning strategy well suited to ever-changing data. We
believe that the per query basis fan-out control capability
can provide opportunities of optimizing the global efficiency
of the distributed graph services by considering the global
performance related statistics.

III. DESIGN

The primary goal of Moolle’s design is to enable fine-
grained control for the number of fan-out requests in a single
query processing. The secondary goal is to have simple and
efficient data partitioning strategy that provide the same or an
enhanced level of scalability and resilience compared to other
systems. Aligned with these goals, we designed Moolle based
on three notable concepts: replicated hash-based horizontally-
partitioned data stores, cluster-aware round-robin load balanc-
ing, and per query fan-out control. Based on Norbert, a round-
robin load balancer, we designed a cluster-aware load balancer
that limits the number of fan-out requests. In the design, the
fan-out controller only needs to calculate the optimal number
of fan-out requests per query. The Fig. 3 shows these three
components in the architecture of Moolle. In this section, we
describe the basic idea of controlling fan-out requests first,
and then we detail the design of the data partitioning strategy,
cluster-aware load balancer, and fan-out controller.

A. The basic idea of fan-out control

For a 2nd degree network lookup query, the number of fan-
out requests depends on the number of keys to look up in the

Fig. 3. An overview of the Moolle system and fan-out control examples.
The fan-out controller and cluster-aware load balancer are located in the client.
The client keeps track of the state of the multi-cluster partitioned data stores.
The red solid line in the diagram shows an example of fan-out to only one
cluster. The red solid box is the fan-out controller that selects cluster 1 and
fans-out transactions to only nodes in that cluster. The blue dashed line in the
diagram shows the example of the fan-out to c clusters. The blue dashed box
is the fan-out controller that selects all c clusters and fans-out transactions to
nodes in all c clusters.

query. For example, if the query has k keys to lookup, then
the query processor in the client needs to fetch k values from
data stores. In a single query, Norbert can bundle multiple
lookup requests to the same GraphDB node into one request.
The number of fan-out request is the number of data store
node participating in the query processing. To understand the
relations between the number of keys and the number of
participating data store nodes, we consider the probability, P ,
that processing a query involves a given node as

P =

(
1−

(
ncandidate − 1

ncandidate

)k
)
, (1)

where k is the number of keys per query and ncandidate is
the total number of candidate nodes that can participate in the
query processing. The expected number of nodes participat-
ing is the number of candidate nodes, ncandidate, times the
probability that each node will be selected:

E = ncandidate

(
1−

(
ncandidate − 1

ncandidate

)k
)
. (2)

Note that if ncandidate � k then E → ncandidate. Without
considering the 1st degree network lookup query, E is the
number of fan-out requests in the query processing. Most
active LinkedIn member’s 1st degree network size is suffi-
ciently large to make E → ncandidate. Therefore, we realized
that controlling the number of candidate nodes to participate
in the query processing would limit the number of fan-out
requests. Because each data store cluster has a complete set
of keys, a single cluster can handle any incoming query. With
a sufficiently large k, the number of fan-out requests is the
number of data store nodes in the cluster. By extension, if we
have ccandidate clusters of nnodes nodes involved in the query
processing we can calculate the expected number of fan-out
requests as

E = ccandidatennodes

(
1−

(
ccandidatennodes − 1

ccandidatennodes

)k
)
.

(3)
Note that if ccandidatennodes � k then E → ccandidatennodes.
Therefore, controlling the number of candidate clusters to

Fig. 4. An example of Moolle’s partitioning consists of 3 clusters of 5 nodes
with 10 partitions. The dotted box shows an example of the easy addition and
deletion of clusters in this partitioning strategy.

participate in the query processing can control the number of
fan-out requests.

B. Partitioning

In designing the partitioning for Moolle, it is important
to be able to scale the size and number of the data stores in
order to have easy operationality. The replicated, hash-based,
horizontal partitioning used in our distributed graph system
meets these requirements. The Fig. 4 shows the example of
partitioning in Moolle.

The whole key space is divided into multiple partitions
using a pseudo-random hash function. For the resiliency and
scalability, we replicate the cluster so that losing one data store
node does not interrupt the entire service and simply adding
more clusters can easily scale the system. In each cluster,
the partitions are assigned to nodes in such a way that the
nodes in a cluster cover all the partitions and no two nodes
in a cluster serve the same partition. We select the number of
partitions to be much larger than the number of nodes in order
to avoid repartitioning if we add nodes to a cluster. Therefore,
any single cluster is enough to process any incoming query.
Each node stores the key-value pairs for each key that is in
its partition. To prevent hot spots and minimize the chances of
cascading failures, partition assignment to nodes in different
clusters is not the same. This allows the set cover based routing
algorithm to effectively select minimal sets.

In our system we use separate directories per partition,
and use Apache ZooKeeper [9] to keep track of the global
state. We can increase the number of nodes in a cluster, in
order to decrease the memory footprint per node, in an on-
line manner. We take down a single cluster at a time, add one
or more new nodes, move some partitions from the old nodes
to the new nodes, and then update the state in ZooKeeper.
Similarly, we can add another cluster by copying the data
from an existing cluster onto the new nodes and updating the

state in ZooKeeper. We can scale both in the size of the data
set, and in the request rate without taking down the service.
The clustering and partitioning information is available to the
client so that the client can select clusters and nodes to which
to send the fan-out requests. In the client, Norbert collects
the information from ZooKeeper and constructs routing table
where the key is the partition id and the value is the set of data
store nodes having ownership of the partition id. Per partition
id, the number of data store nodes is same as the number
of clusters. If some data store nodes are down due to either
a system failure or maintenance operation, ZooKeeper marks
the nodes down and broadcast the information to all the clients
and data store nodes, and these update their routing table to
mark the node as unavailable.

C. Cluster aware load-balancer

Moolle’s core component, the cluster-aware load balancer
has the capability of limiting the number of clusters to partic-
ipate in the query processing, and exposes this control as an
API parameter. If the user sets the number of cluster, cselected,
the load balancer selects cselected clusters randomly. With the
set of partition ids generated from a given set of keys to
lookup, the load balancer iterates over the partition ids and
selects a node from the routing table and assigns the key to
the selected node. Once a node is selected and assigned, the
node is returned back the routing table queue to achieve round-
robin manner. If a node has multiple key assignments, the load
balancer bundles them into single request to the node.

Compared to the set cover algorithm, this approach
achieves a more even distribution of keys across selected
nodes. If the number of input keys is sufficiently large, the
set cover algorithm assigns a higher number of keys to the
nodes selected earlier than those selected later, which can
cause long tail request response time. However, Moolle’s load
balancer distributes the keys across selected nodes in a more
even manner, which effectively prevents the long tail request
response time.

For even better balanced key assignments, we designed
an assignment adjustment where the load balancer removes
key assignments from heavily assigned nodes and reassign
the keys to under assigned node. We propose a node borrow
concept that picks the under assigned node from the non-
selected clusters.

D. Fan-out controller

We propose a user-definable fan-out controller that imple-
ments a function that determines the optimal number of fan-
out requests based on various factors including the number
of keys to fetch, the query type, the client side RPS, and
the global RPS across data store nodes. For each query, the
query processor make calls to the fan-out controller, then the
controller considers the input factors and its control model to
determine the optimal number of fan-out requests. For example
multi key lookup type queries and common entity type queries
have different processing requirements. Even queries of the
same type can have different performance requirements. For
example, queries in synchronous and asynchronous workflows
should have different fan-out control strategies. We take ad-
vantage of this by implementing separate fan-out controllers
for those various of types of queries.

Moreover, the per query basis fan-out control can optimize
the global and system efficiency by considering the global and
local status metrics. For example, while applying aggressive
fan-out requests for one type of queries, it is possible that
the aggressive fan-out would generate high RPS and cause
the multiget hole problem. If we can derive the threshold of
RPS that causes the multiget hole problem, we can implement
a controller that controls the number fan-out requests based
on the measured RPS in client side. It is also possible to
apply various feedback control system practices such as a PD
controller[15] to enhance the entire system stability.

The Fig. 3 shows the query processing workflow in Moolle
system. Once a query arrives to the query processor, the
query processor determines which fan-out controller to use to
compute the amount of fan-out requests based on the query
type. After the controller chooses the number clusters to use,
the query processor passes the control to the cluster-aware load
balancer. The load balancer would select either 1 or c clusters
to participate in the query processing and send requests to the
data store layer. For 1 cluster, the number of fan-out requests
is limited to the n and for c clusters, limited to the cn.

IV. FAN-OUT CONTROLLER DESIGN

Moolle is a generic distributed data store system that can
solve the issues of fan-out requests in general distributed data
services. The fan-out controller can achieve the desired fan-
out by considering the types of incoming queries and global
performance related metrics.

In this section, we describe the design of the fan-out con-
trollers used in our distributed graph service in our production
environment to demonstrate how Moolle can solve the issues of
fan-out in distributed data services. To understand the types of
fan-out requests and their processing requirements, we describe
the algorithms of important queries and the production system
issues. To satisfy the requirements of the fan-out requests, we
describe the basic fan-out controllers. Then, to achieves the
global performance optimization, we describe the advanced
fan-out controllers. Finally, we evaluate each fan-out controller
design in section V.

A. Query Analysis

LinkedIn’s distributed graph service supports different
queries including simple edge set look ups, node centric graph
traversals such as distance badging or path finding, network
size computation, and common entity computation. Most of
the query processing uses specialized bi-directional breadth
first graph traversal algorithms. To optimize the performance
and efficiency of the query processing, NCS serves member
connections distance badging, path finding, and network size
computing queries by caching each members 2nd degree net-
work. The Graph API Service processes other queries includ-
ing simple edge set lookups and common entity computation
and checking by generating fan-out requests to GraphDB nodes
directly. In this section, we describe only the distance badging
and common entity checking queries because they generate the
most important types of fan-out requests.

1) Distance badging query: The distance badging query
computes the distance, up to three degrees apart, between a
single source graph node, s and multiple destination nodes,

D based on the breadth-first graph traversal algorithm. The
Graph API Service delegates the query processing to NCS
in order to leverage the members 2nd degree network cache.
The members 2nd degree network cache consists of 1st and
2nd degree connections that are sorted integer sets containing
only member ids. The Algorithm1 shows the distance badging
implementation in NCS.

Algorithm 1 Distance Badging
1: procedure GETDISTANCE(s, D)
2: R← map(id, distance)
3: N ← GETNETWORKCACHE(s)
4: for each id ∈ D ∩N [1] do
5: R[id]← 1
6: D = D − id
7: for each id ∈ D ∩N [2] do
8: R[id]← 2
9: D = D − id

10: F ← FETCHCONNECTIONS(D)
11: for each id ∈ D do
12: if F [id] ∩N [2] 6= ∅ then
13: R[id]← 3
14: else
15: R[id]← UNKNOWN

return R
16: procedure GETNETWORKCACHE(s)
17: N ← map(degree, connections)
18: if Cache[s] 6= ∅ then
19: N ← Cache[s]
20: if N is expired then
21: Cache[s] ← ASYNCFETCHNETWORKS(s)
22: else
23: N ← FETCHNETWORKS(s)

return N

The GETDISTANCE function (in Algorithm 1) computes
up to two degree apart only using the s member’s network
cache, Cache[s] using intersection of D and 1st and 2nd degree
connections in the cache (line 3 to 9). To compute third degree
distances, it must fetch the 1st degree connections of each the
remaining destination ids from GraphDB (line 10) and intersect
the 1st degree with the 2nd degree connections in the cache
(line 11 to 15). The network cache is a look through cache so
in case of cache miss, the processing must wait until the cache
is created.

The GETNETWORKCACHE (in Algorithm 1) function re-
trieves the cache store to see if s member’s network cache
exists (line 18). In the case of cache miss, it fetches s
member’s network cache by calling the FETCHNETWORKS
function (line 23). In case of stale cache hit, it returns the
stale cache, then asynchronously updates the cache by calling
the FETCHNETWORKS function (line 21). The ASYNCFETCH-
NETWORKS function implements the same algorithm as the
FETCHNETWORKS function except the caller asynchronously
handle the response using a separate thread.

The FETCHCONNECTIONS function call fetches the 1st

degree connections from multiple GraphDB nodes if the D
contains multiple ids, which is the first fan-out request type.
Because the result should not be unioned together, we name
this type of fan-out requests as non-union fan-out requests.

Algorithm 2 Network Cache Creation
1: procedure FETCHNETWORKS(s)
2: N ← ∅
3: F ← FETCHCONNECTIONS(s)
4: S ← ∅
5: for each id in F do
6: S ← S ∪ FETCHCONNECTIONSUNION(id)

7: N [0]← s
8: N [1]← F
9: N [2]← S

return N

The FETCHNETWORKS function (in Algorithm 2) fetches
the 1st and 2nd degree connections from multiple GraphDB
nodes by generating fan-out requests. It consists of two steps:
fetching 1st degree connections (line 3) and fetching 2nd de-
gree connections, the 1st degree connections of each member
in the 1st degree connections (line 6).

Because the network cache stores the 1st and 2nd de-
gree connections in sorted integer sets, all the 1st degree
connections of the 1st degree connections must be unioned
together. Each GraphDB node returns a sorted integer set after
performing a local union operation on the 1st degree connec-
tions of all the ids with which the GraphDB node receives
the FETCHCONNECTIONSUNION (line 6) function call. The
GraphDB node local union reduces network traffic significantly
because of the significant overlap between the 1st degrees
of the 1st degree connections of the LinkedIn members.
The FETCHCONNECTIONSUNION function generates fan-out
requests and performs a union of the entire response, so, we
name this type of fan-out request as union fan-out requests.

The FETCHNETWORKS function call is handled syn-
chronously under cache-miss (line 23 in Algorithm 2) and
asynchronously under stale cache-hit (line 21 in Algorithm
2). Therefore, we break down the union fan-out requests into
synchronous union fan-out requests and asynchronous union
fan-out requests because each of them has different processing
requirements.

2) Common entity checking: The common entity checking
query has lots of applications including determining if two
members have common connections, share the same school
or company, or follow the same influencer or company.
Processing this query leverages the inverted index in each
GraphDB node, which is identical to a conventional search
system’s query processing using distributed inverted indices.
To process this query, the Graph API Service node generates
the same fan-out common entity checking requests to all the
partitions, each of which evaluates the requests based on
its own data. The query processing has the benefit of early
termination techniques; if at least one response confirms that
two members share a common entity in one data partition, the
query processor can answer the query without waiting for all
the responses of the fan-out requests.

The HASCOMMONENTITY function (in Algorithm 3)
chooses the set of nodes N such that the union of the set
of partitions in each node covers all the data partitions (line 2
to 6). Then, it dispatches fan-out requests to all the selected
nodes concurrently (line 8 to 9). Then, it waits on the response

Algorithm 3 Common Entity Checking
1: procedure HASCOMMONENTITY(s)
2: PN ← map(partition, N)
3: N ← ∅
4: for each partition in P do
5: node← next node in the PN [partition]
6: N ← N ∪ node
7: Q← ∅
8: for each node in N do
9: CONCURRENTHASCOMMONENTITY(Q, node)

10: total← N.size
11: while total > 0 AND Q 6= ∅ do
12: r ← head of Q
13: if r == true then return true

return false

queue until all the responses return (line 11 to 13). In case
that a response confirms the connectivity, it can terminate the
processing without waiting for the other responses (line 13).
Note that as the common entity checking supports member-to-
company/school/followers type connections, it doesn’t leverage
NCS because NCS only stores the member-to-member type
connections in its cache.

The CONCURRENTHASCOMMONENTITY call is another
type of fan-out requests, which we refer to as early terminable
fan-out requests.

B. Production system analysis

During the design of fan-out controllers for different types
of fan-out requests, we closely investigate the production
distributed graph system. In this section, we discuss important
aspects of the system that direct the fan-out controller design.

The analysis in this section uses production distributed
graph service system. LinkedIn has multiple collocated data
centers, each of which serves web services with the full stack
of web services and applications. Each data center contains an
independent distributed graph service that has different service
configurations. The distributed graph service in this analysis
uses 200 GraphDB nodes with 10 clusters and 20 nodes in
each cluster. Note that each data center may have a different
number of clusters and a different number of nodes in each
cluster. Based on the scalability plan, the number of GraphDB
nodes and clusters can vary overtime.

1) Tail latency: In distributed data services, tail latency is
a well-known issue that also appears in our distributed graph
service. This section describes the pattern of the tail latency
in production environments.

The Fig. 5 shows the latency distributions of single key
lookup request between a NCS and the GraphDB nodes. The
single key lookup request fetches a single members 1st degree
connections from one GraphDB node. Even for members with
the maximum number of connections, the median latency of a
single key lookup query is under 2 millisecond, which means
that the size of response in this evaluation is small enough
not to give much impact on the latency. However, the 99th
percentile is 21 milliseconds and the maximum is 323 ms.
This pattern is the long tail latency.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 17221

L
a
te

n
c
y
 (

m
s
)

Number of Requests

Median = 2 99th = 21

Fig. 5. Long tail latency pattern
between NCS and GraphDB.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10

L
a
te

n
c
y
 (

m
s
)

Number of Clusters

latency
processing

Fig. 6. Non-union fan-out requests
latency between NCS and GraphDB.

Mitigating the heavy tailed latency pattern issue is one of
most important tasks what we have, however, in this paper,
we focus on how the tail latency influences the processing
requirements of each type of fan-out requests.

2) Fan-out request query latency: Considering only a sin-
gle query that generates fan-out requests, the latency of the
query processing consists of the maximum latency on the
server side among the fan-out requests plus the processing time
of the outgoing requests and incoming responses on the client
side.

L = Lclient (nselected) + max
i

(
Lserveri

(
k

nselected

))
(4)

In this equation nselected is the number of nodes selected
in the query processing and k is the number of keys per
query. Lclient is a latency function of the client side work,
and Lserveri is the latency function of an individual server.
The right term represents the latency of each request, which
consists of network transfer latency plus server side request
processing latency.

An aggressive fan-out increases the nselected; as a result,
the left term increases and the right term decreases. Intuitively,
an aggressive fan-out requests should achieves better latency
because the right term is larger than the left term in general.

However, due to the tail-latency pattern, an aggressive
fan-out requests has a higher probability of having a request
with long latency. Therefore, large, aggressive fan-out requests
should have worse latency than small fan-out requests. We ver-
ify this by evaluating the non-union fan-out requests between
a NCS node and GraphDB nodes, as shown in Fig. 6.

Fig. 6 shows that the average latency of non-union fan-out
requests increases as more aggressive fan-out is used. For the
data in Fig. 6, we measure the latency of the fan-out requests
between a NCS node and GraphDB nodes by generating the
same set of distance badging queries to NCS and varying the
number clusters to fan-out using the fan-out controller. The
blue portion of each bar indicates the right term and red portion
indicates the left term of the equation 4.

C. Basic fan-out controllers

In section IV-A, we describe the important types of fan-out
requests used by the LinkedIn distributed graph service. Each
type of fan-out requests requires a unique fan-out control strat-
egy because each has different processing requirements. Our
production system uses several fan-out controllers per query

type based on Moolle. This section describes the design of
the fan-out controllers. We believe that the fan-out controllers
are general enough to apply to other general distributed data
services.

1) Non-union fan-out controller: In general, the non-union
fan-out request is latency sensitive. For example, distance
badging query processing must wait for the response of all
the non-union fan-out requests (in Algorithm 1). Considering
that the equation 4 is the latency model of this request type,
the fan-out controller for this type of query should minimize
the degree of fan-out requests to optimize the latency. Note
that this fan-out strategy also reduces the client side overhead,
the left term in equation 4.

Therefore, we design the non-union fan-out controller in
order to minimize the degree of fan-out requests by selecting
only one cluster to fan-out to. This fan-out controller generates
at most 20 fan-out requests in our evaluation production system
because each GraphDB cluster has 20 GraphDB nodes.

2) Synchronous union fan-out controller: Synchronous
union fan-out requests are very similar to the non-union fan-out
request except that the union fan-out request returns one single
set after applying union on entire 1st degree connections. In
the case that a GraphDB node receives a request with multiple
member ids due to request bundling, the node returns a single
set after unioning all of the 1st degree connections. Therefore,
this type of query can generate additional overhead for the
response processing on both the client side and server side.

The latency model of the union fan-out requests is very
similar to equation 4. In both the client and server side,
performing additional union operations would increase the
processing time, however the heavy tailed latency pattern hides
the impact of the processing time of the union operations.
Therefore, for this type of query, minimizing the degree of
fan-out requests should achieve best latency.

3) Asynchronous union fan-out controller: A query that
generates asynchronous fan-out requests do not need to wait
for the responses. For example, during a distance badging
query processing, if NCS updates the network cache asyn-
chronously, the query does not need to wait for the response
of the asynchronous network cache update. Therefore, the
asynchronous fan-out requests is not latency sensitive.

Instead, for the asynchronous union fan-out requests, we
develop a new fan-out controller that balances the computation
overhead on both the client and server. The union operation
causes computation overhead in both client side and server
side, which means that minimizing the degree of fan-out
requests pushes more computation overhead to the server side.

P = Pclient (nselected) + max
i

(
Pserveri

(
k

nselected

))
, (5)

where Pclient and Pserver are the computation penalty
function in client and server side. In our distributed graph
service, we determine the client side and server side penalty
function based on empirical testing. The penalty function
Pclient(x) and Pserver(x) are proportional to xlog(x). This
is the running time of our union algorithm.

The asynchronous fan-out controller controls the nselected

to minimize the P . This fan-out controller dynamically con-
trols the degree of fan-out based on the number of keys, k.
For example, in our production system, queries with less than
450 keys are sent to one cluster, those with about 1,800 keys
fan-out to five clusters, and those with more than 3,000 keys
fan-out to all 10 clusters.

The set cover based approach in [16] can cause GraphDB
side intermittent latency increases because the greedy fan-
out pushes heavy computation overhead to the GraphDB
nodes. However, the dynamic fan-out control does not cause
latency increases because it balances the computation overhead
between the client and server.

4) Early terminable fan-out requests: A query that gen-
erates early terminable fan-out requests can finish as long as
at least one of the requests satisfies the query. Therefore, in
the case that the query can terminate early, aggressive fan-
out requests reduces the latency because each GraphDB nodes
need to process less number of data partitions. However, if the
query must wait for all the requests, aggressive fan-out will
increase the latency due to the heavy tail latency pattern.

Therefore, we can choose a fan-out controller based on
the expected percentage of queries that will terminate early.
For example, for a query type that has higher probability of
early termination, aggressive fan-out controller can optimize
the overall latency, while for a query with lower probability,
minimizing fan-out can optimize the latency.

D. Advanced fan-out controllers

In addition to the type of query and the processing require-
ments, the fan-out controller can use statistical information
that predicts the stability of components in distributed data
service. In this section, we consider the early terminable fan-
out requests with a high probability of early termination and
demonstrate two advanced fan-out controllers that consider the
client side QPS and global RPS.

1) Client QPS based fan-out controller: Although ag-
gressive fan-out can help reduce latency for an individual
query, if the client is under heavy load, this strategy may
produce negative consequences such as the multiget hole
problem. Each client has a maximum throughput at which it
no longer process requests/responses and instead either put the
requests/responses in a queue or drops them. If the client has
to enqueue them, then the latency of the query becomes the
sum of the latency of the processing time and the latency of
the queue wait time. Due to the additional queue wait time,
the entire system’s QPS throughput decreases. To handle this
case, a proper strategy needs to consider the aggregate load
on the client side and the impact of additional fan-out to the
request rate per client.

For an incoming QPS, we can easily estimate the expected
RPS.

ERPS (t) = cnCQPS (t) (6)

ERPS(t) is the expected requests per second and CQPS(t)
is current incoming query rate. c is the number of clusters and
n is the number of nodes in each cluster. If we know that a
particular client performs well at a desired request per second,

DRPS , the best fan-out control is the most aggressive fan-out
that doesn’t surpass DRPS . As a result, we can achieve the
best fan-out in terms of the number of clusters, cselected as
follows:

cselected = min

(
c,

cDRPS

ERPS(t)

)
(7)

cselected is the number of clusters that provides the lowest
latency without surpassing the desired requests rate. In general,
we consider the DRPS as the maximum request processing
throughput of a client in terms of the number of requests per
second. From LinkedIn distributed graph service, we determine
DRPS by throughput performance testing.

2) Global Requests Per Second: Similar to the client side
processing limitations, there are also server side processing
limitations. If a server receives a higher request rate than its
throughput, the request processing time suddenly increases due
to queue time and processing interference. We believe that
the fan-out control can prevent this situation by reducing the
number of fan-out requests in response to the higher QPS.

From equation 6, we can generalize the sum of request per
second in entire data store layer.

∑
ESRPS (t) = cnmCQPS (t) , (8)

where m is the total number of client node and ESRPS is
the expected requests per second in one server node. If cn is
the total number of server nodes, we can compute the ESRPS

as follows:

ESRPS (t) = mCQPS (t) (9)

Using this equation we can expand the equation 7

cselected = min

(
c,

DRPS

nCQPS (t)
,

cDSRPS

mCQPS (t)

)
, (10)

where DSRPS is the desired requests per second in one
single server, which can be measured from performance test
similar to the DRPS . From equation 10, we can implement
a controller that accounts for both client and server side
throughput limitations by choosing the optimal number of
clusters for fan-out requests.

V. EVALUATION

In LinkedIn’s distributed graph service, the use of a naive
round-robin strategy caused scalability problems because the
fan-out scaled linearly with the number of replicas. When the
number of requests exceeds the maximum aggregate through-
put of the distributed graph data store, the overall latency of
the service increases because of the request queuing time in
either the client or server side.

To resolve this problem, we applied a greedy set cover that
reduced the number of requests. However, this can generate
unbalanced requests to the data store when the system has to
handle a single request that requires fetching a large number
of entries. Using Moolle, we resolved both of these issues

by optimizing the fan-out control based on our production
environment.

In this section, we demonstrate the Moolle’s fan-out con-
trollability and production system performance improvements
by comparing to the naive round-robin strategy and the greedy
set cover algorithm. For the evaluation, we use production
LinkedIn graph service system with 10 clusters of 20 nodes
per cluster running GraphDB.

A. Fan-out control with Moolle

In this section, we demonstrate the effectiveness of the fan-
out control that is the primary contribution of Moolle. We also
demonstrate how Moolle can help to avoid the multiget hole
problem, preventing CPU bounding based on the number of
requests. In this evaluation, we generated fan-out requests that
have no server side processing. We measured the impact on the
number of requests as a relationship between both the number
of keys in a query and the total number of clusters.

Besides both minimizing and maximizing fan-out at the
same level as the set cover and naive strategies respectively,
Moolle provides finer grained control of the fan-out based
on the number of clusters (Fig. 7(a)). For evaluations, we
implement a static fan-out controller that limits the number
of fan-out requests by limiting the number of clusters. For
example, for the Moolle (3), the static fan-out controller limits
the fan-out requests to only 3 clusters. The Moolle (1) and
(10) minimize and maximize fan-out respectively. Moolle (3)
, (5) and (7) shows the finer fan-out controls.

 0

 100

 200

 0 250 500 750 1000

R
e
q
u
e
s
ts

Keys

naive
set cover

Moolle (1)

Moolle (3)
Moolle (5)
Moolle (7)

Moolle (10)

(a) Controllability

 10

 50

 100

 5 10

R
e
q
u
e
s
ts

Clusters

naive
set cover

Moolle (1)

(b) Number of Requests

Fig. 7. 7(a) shows the changes of the number of fan-out requests as the
number of keys increases in a single query that generates fan-out request.
7(b) shows the changes of the number of fan-out requests as the number of
data stores increases.

To mitigate the multiget hole problem, we need to minimize
the number of fan-out requests. We measure the overhead using
the number of requests per query, which is the same metric as
in [14]. The Fig. 7(b) shows that both Moolle and set cover
strategies mitigate the multiget hole issue because they do not
increase the number of requests as the number of data stores
increases. Note that after 5 clusters, Moolle can even strictly
limit the number of requests compared to the set cover strategy.

B. Basic fan-out controllers in NCS

For production NCS, based on the design in IV-C and IV-D,
we implement fan-out controllers for the three types of fan-out
requests. For the non-union and synchronous fan-out requests
type, the fan-out controllers select one cluster to minimize the

number of requests. For the asynchronous fan-out requests,
the fan-out controller selects the number of clusters in order
to minimize the penalty P in equation 5.

For the evaluation purpose, we set up one NCS node
to communicate with entire production GraphDB nodes that
handle real production traffic. The client generates production
traffic to the NCS node by replaying a production NCS request
log.

Low Medium Peak

M
e
d
ia

n
 l
a
te

n
c
y

QPS rate

Moolle set cover naive

(a) NCS median response time

Low Medium Peak

9
9
th

 l
a
te

n
c
y

QPS rate

Moolle set cover naive

(b) NCS 99th precentile re-
sponse time

Fig. 8. 8(a) and 8(b) shows the changes of the median and 99th percentile
response time of NCS with different fan-out control strategy at different QPS
level.

1) Latency: Moolle enhances the throughput of NCS
through better performance than either the set cover or naive
strategy in both median and 99th percentile response time.
Compared to the naive strategy, it improves median response
time by effectively optimizes the fan-out requests. Compared
to the set cover approach, it improves 99th percentile response
time through better key distribution among fan-out requests.

As the Fig. 8(a) shows, at medium and peak traffic,
Moolle’s response time is about 35% less than naive strategy.
The set cover strategy improves median latency by approxi-
mately 5% at medium traffic and 25% at peak traffic compared
to the naive strategy. However, the set cover’s the uneven
distribution of keys among fan-out requests can cause high
latency by increasing the right term in the equation 4, which
increases 99th percentile latency as shown in the Fig. 8(b).

This evaluation shows that Moolle effectively optimize the
latency of NCS by controlling the fan-out requests based on
the query.

2) Computation balancing: For union fan-out requests, a
sufficiently large number of keys pushes heavy computational
overhead to GraphDB nodes. Because our union operation in
GraphDB requires an additional memory copy, a larger number
of keys in a request to GraphDB can cause a large memory
allocation, which can cause process stall due to garbage
collections. That’s the main motivations of the computation
balancing fan-out controllers.

The asynchronous union fan-out controller can effec-
tively balance the computational overheads between NCS and
GraphDB nodes. The Fig. 9(a) shows that Moolle always
generate small P in the equation 5, which means that it
achieves better computation balance than set cover and naive
approach. However, the set cover shows poor balancing that
pushes computational overheads to the GraphDB nodes. Once
a GraphDB node is processing heavy requests, it increases

 0

 100

 200

 300

 0 2000 4000 6000

C
o
s
t

Keys

naive
set cover

Moolle

(a) Cost balancing

 0

 100

 200

 100 200

R
e
q
u
e
s
ts

Queries / Second

naive
set cover

Moolle

(b) Requests per query

 5000

 0

T
o
ta

l
R

e
q
u
e
s
ts

Queries / Second

naive
set cover

Moolle

(c) Total Requests

 100

5000 2500 1

R
e
q
u
e
s
ts

DSRPS

naive
set cover

Moolle

(d) Requests per query at dif-
ferent DSRPS

Fig. 9. 9(a) shows the computed overhead P in equation 5 and requests per
query changes as the number of vertices in a query increases. As the incoming
QPS increases, 9(b) shows the changes of RPS and 9(c) shows the changes
of the total number requests. 9(d) shows that the number of requests changes
as the desired server side RPS changes.

queue wait time of other requests. We consider this is the
source of high 99th percentile latency of the set cover strategy.

C. Advanced fan-out controllers of early terminable query

For the early terminable type of query, we want to use more
aggressive fan-out control to achieve better latency without
surpassing a given desired RPS in the client and server nodes
based on the incoming client query rate (described in the
equation 10).

For evaluation, we extend Moolle’s fan-out controller using
equation 6 and 10 with the DRPS as 5,000 RPS in Graph
API node and DSRPS as 10,000 RPS in GraphDB node. The
desired RPSs are determined via empirical testing. Because
GraphDB nodes in the production system serve traffics from
both NCS and Graph API, evaluating the early terminable type
of query in production is difficult. Therefore, we develop a
simulator that emulates the 10 clusters of 20 GraphDB nodes.

In addition to the advanced fan-out controllers that con-
siders the client and server side RPS, a simple PD controller
using 1.0 as proportional gain and 0.5 as derivative gain is
implemented for stable control. We measure the number of
requests and maximum computational overhead in GraphDB
nodes per request with increasing the request rate.

Fig. 9(b) shows the change in total number of requests
between client and server data stores. At less than 25 QPS,
Moolle maximizes fan-out in order to reduce the latency of the
early terminable queries. Around 125 QPS, Moolle minimize
fan-out per request at the same level as the set cover strategy.
Between 25 and 125 QPS, Moolle balances aggressive fan-out

and maintaining the desired RPS. Fig. 9(c) shows that Moolle
can effectively keeps the RPS under the DRPS .

During the peak traffic time, GraphDB nodes receive a
blend of types of queries. Under this situation, Moolle should
reduce the fan-out requests for early terminable queries to
improve the server side performance. At constant incoming
QPS (30 queries/second), Fig. 9(d) shows that as the DSRPS

decreases, Moolle tries to limit the fan-out requests. When
DRPS > 2, 500, client side RPS control limits the fan-out
to 160 requests. However, for lower DSRPS , Moolle limits
the fan-out in order to not surpass the target server side RPS.
This demonstrates Moolle’s ability to optimize the global status
of the distributed data store by considering various statistical
information.

VI. RELATED WORK

There are other approaches as well for solving the multiget
hole problem and routing requests in distributed data stores.
We present previous approaches with a comparison to our
work.

Dynamic Partitioning: Although many online social net-
work including Facebook and LinkedIn, use distributed hash-
ing to balance data between servers [10], [16], there has been
significant interest in partitioning the data in an intelligent fash-
ion to preserve data locality. In [13], the graph is partitioned
according to social structure using replication to ensure that all
neighbors of a node are co-located on the same server as the
master replica of a user. This approach suffers from a large
amount of additional memory overhead for replication and
increased complexity involved in repartitioning masters and
determining which servers to route requests. In [3], the data is
partitioned using a time component, which is not considered
in our work, although it suffers from similar problems in
computation and complexity in determining routing as the
other partitioning approaches. Our approach would work with
temporal data as we are agnostic to the data retrieved.

Set cover algorithms: The second approach is to use set
cover algorithms to reduce the number of fan-out requests by
selecting nodes from a set of replicas to route requests. In [16],
a modified version of the greedy approximation algorithm is
used to provide a logarithmic bound on the number of keys and
empirically reduced both the number of requests and latency.
In [14], an efficient set cover algorithm is combined with
replication and retry in order to decrease the number of fan-out
requests. Replicate and bundle focuses on solving the problem
where the focus is purely on memory fetches with low cost per
request. In cases, where processing is done on the data store
node side, this can decrease performance as the work might not
be balanced. Set cover is NP-complete [7], any approach must
use some sort of approximation algorithm which are typically
greedy and therefore highly likely to produce uneven distribu-
tion of keys in fan-out requests. Though the overall latency is
correlated to the size of the request, it is mainly determined
by the slowest request amongst all the fan-out requests. This
result in the set cover approaches leading to worse system
performance when considering a global perspective.

VII. CONCLUSION

In this paper, we described Moolle, a system that provides
fan-out control in distributed data stores at low cost of scal-

ability and maintainability. Moolle has been implemented in
the LinkedIn distributed graph service, which serves hundreds
of thousands social graph traversal queries per second. With
the flexible user definable fan-out controller, we can scale
different types of graph queries for a power law graph[1], by
implementing several custom fan-out controllers. We are able
to reduce the total the number of fan-out requests generated
from our graph queries by 50% and reduce the latency per
request by 30%. We conclude that Moolle increases throughput
and scalability of distributed data stores with the capability of
optimizing processing on a per query basis.

REFERENCES

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman.
Search in power-law networks. Physical review E, 64(4):046135, 2001.

[2] K. Andreev and H. Racke. Balanced graph partitioning. Theory of
Computing Systems, 39(6):929–939, 2006.

[3] B. Carrasco, Y. Lu, and J. M. da Trindade. Partitioning social networks
for time-dependent queries. In Proceedings of the 4th Workshop on
Social Network Systems, page 2. ACM, 2011.

[4] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-
driven approach to database replication and partitioning. Proceedings
of the VLDB Endowment, 3(1-2):48–57, 2010.

[5] J. Dean. Achieving rapid response times in large online services. In
Berkeley AMPLab Cloud Seminar, 2012.

[6] B. Fitzpatrick. Memcached: a distributed memory object caching
system. http://http://memcached.org/, 2011. [Online; accessed June-
2014].

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co Ltd, 1979.

[8] T. Hoff. Facebook’s Memcached Multiget Hole: More Machines !=
More Capacity. http://highscalability.com/blog/2009/10/26/facebooks-
memcached-multiget-hole-more-machines-more-capacit.html, 2009.
[Online; accessed June-2014].

[9] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In USENIX Annual Technical
Conference, volume 8, page 9, 2010.

[10] A. Lakshman and P. Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, 2010.

[11] LinkedIn. Norbert. https://github.com/linkedin/norbert/, 2009. [Online;
accessed June-2014].

[12] M. Newman. Community detection and graph partitioning. EPL
(Europhysics Letters), 103(2):28003, 2013.

[13] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez. The little engine (s) that could: scaling online
social networks. ACM SIGCOMM Computer Communication Review,
41(4):375–386, 2011.

[14] S. Raindel and Y. Birk. Replicate and bundle (rnb) – a mechanism for
relieving bottlenecks in data centers. In Parallel Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on, pages 601–610,
May 2013.

[15] D. E. Rivera, M. Morari, and S. Skogestad. Internal model control: Pid
controller design. Industrial & engineering chemistry process design
and development, 25(1):252–265, 1986.

[16] R. Wang, C. Conrad, and S. Shah. Using set cover to optimize a large-
scale low latency distributed graph. In Presented as part of the 5th
USENIX Workshop on Hot Topics in Cloud Computing, Berkeley, CA,
2013. USENIX.

