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ABSTRACT 

A/B testing, also known as bucket testing, split testing, or 
controlled experiment, is a standard way to evaluate user 
engagement or satisfaction from a new service, feature, or 
product. It is widely used among online websites, including social 
network sites such as Facebook, LinkedIn, and Twitter to make 
data-driven decisions. At LinkedIn, we have seen tremendous 
growth of controlled experiments over time, with now over 400 
concurrent experiments running per day.  General A/B testing 
frameworks and methodologies, including challenges and pitfalls, 
have been discussed extensively in several previous KDD work 
[7, 8, 9, 10]. In this paper, we describe in depth the 
experimentation platform we have built at LinkedIn and the 
challenges that arise particularly when running A/B tests at large 
scale in a social network setting. We start with an introduction of 
the experimentation platform and how it is built to handle each 
step of the A/B testing process at LinkedIn, from designing and 
deploying experiments to analyzing them. It is then followed by 
discussions on several more sophisticated A/B testing scenarios, 
such as running offline experiments and addressing the network 
effect, where one user’s action can influence that of another. 
Lastly, we talk about features and processes that are crucial for 
building a strong experimentation culture. 

Categories and Subject Descriptors 
G.3 Probability and Statistics/Experimental Design: controlled 
experiments, randomized experiments, A/B testing. 

General Terms 
Measurement, Design, Experimentation 

Keywords 
Controlled experiments, A/B testing, social network, online 
experiments, network A/B testing, measurement. 

1 INTRODUCTION 
A/B testing, also called controlled experiment, has become the 
gold standard for evaluating new product strategies and 
approaches in many internet companies, including Amazon, eBay, 
Etsy, Facebook, Google, Groupon, LinkedIn, Microsoft, Netflix 
and Yahoo [9, 10]. As experimentation gains popularity, so does 
the need for properly designing, managing and analyzing 

experiments.  
The theory of controlled experiment dates back to Sir Ronald A. 
Fisher’s experiments at the Rothamsted Agricultural Experimental 
Station in England in the 1920s [11]. Since then, many textbooks 
and papers from different fields have provided theoretical 
foundations [20, 21, 32, 33] for running controlled experiments. 
While the theory may be straightforward, the deployment and 
mining of experiments in practice and at scale can be complex and 
challenging [13, 14]. In particular, several past KDD papers have 
discussed at length the experimentation systems used at Microsoft 
Bing and Google [8, 9], including best practices and pitfalls [7, 
10]. Facebook also introduces the PlanOut language which 
provides a toolkit for parameter-based experiments [12]. 

At a high level, we follow similar practices and methodology for 
experimentation at LinkedIn. However, many of the challenges 
we face arise particularly because LinkedIn is a member-based 
social network (we call our logged-in users “members”). In this 
paper, we focus on how we address these challenges as we scale 
to run more experiments. We share how we built XLNT 
(pronounced “excellent”), the end-to-end A/B testing platform at 
LinkedIn, to not only meet the day-to-day A/B testing needs 
across the company, but to also address more sophisticated use 
cases that are prevalent in a social network setting.  
When we launched XLNT, the platform only supported about 50 
experiments per day. Today, that number has increased to more 
than 400. The number of metrics supported has grown from 60 to 
more than 1000. Such tremendous growth is not only attributed to 
our scalable platform but also to our continuous emphasis on 
embedding experimentation deeply into LinkedIn’s decision-
making process and culture. We include in the paper several 
XLNT features we built to enable us to take education and 
evangelization past the “classroom”. 

A/B testing is truly the driver behind LinkedIn’s product 
innovation. The areas we experiment on are extremely diverse, 
ranging from visual changes on our home page, to improvements 
on our job recommendation algorithm, to personalizing the 
subject line of our emails. We begin this paper with two example 
experiments that we recently ran.  

 
Figure 1: Guided edit experiment on profiles. 

The first experiment was on members’ profile pages (Figure 1). In 
order to encourage members to better establish their professional 
identity, we displayed a small module at the top of their profile. 
The experiment was to include an additional line of text to call out 
the benefits and values a complete profile provides. For instance, 
the example in Figure 1 encourages members to add volunteer 
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experience to their profile. This small change turned out to be 
extremely successful. Results from the A/B test showed a 14% 
increase in profile edits on volunteer experience!  

Another experiment was an entire redesign of the Premium 
Subscription’s payment flow (Figure 2). Apart from providing a 
cleaner look and feel, we reduced the number of payment 
checkout pages and added an FAQ. The experiment showed an 
increase of millions of dollars in annualized bookings, about 30% 
reduction in refund orders and over 10% lift in free trial orders.   

 
Figure 2: New Premium Subscription payment flow. 

In both cases, the XLNT platform made it feasible to quickly 
measure the impact of both small and large changes at low cost. 
This enables us to identify features with a high Return-On-
Investment (ROI) and moreover, to quantify the impact in a 
scientific and controlled manner. A screen shot of our analysis 
dashboard is shown in Figure 3. 

 
Figure 3: XLNT analysis dashboard. 

Here is a summary of our contributions in this paper: 

• We share the details of how we built our experimentation 
platform, including the engineering challenges we faced and 
how we addressed them.  

• We discuss several challenging A/B testing scenarios we face 
at LinkedIn. Some of these challenges, particularly the ones 
that are specific to experimentation on social networks, are 
discussed and shared in a public paper for the first time. 

• We discuss several concepts and novel features we 
introduced at LinkedIn that have significantly shaped our 
experimentation culture.  

• Many real A/B test examples are shared for the first time in 
public. Even though the examples may be LinkedIn specific, 
most of the lessons and best practices we share are applicable 
to experimenting on social networks in general. 

The paper is organized as follows. Section 2 introduces XLNT 
and how it is built to address several fundamental challenges. 
Section 3 discusses several more sophisticated A/B testing use 
cases. Section 4 discusses the XLNT features that help create a 
stronger experimentation culture and Section 5 concludes. 

2 THE XLNT PLATFORM 
We realized early on that ad-hoc A/B testing was not a scalable 
approach to sustain the high speed of innovation at LinkedIn. We 
required an A/B testing platform to allow us to quickly quantify 
the impact of features. Additionally, this needed to be achieved in 
a scientific and controlled manner across the company. Thus, we 
built XLNT.  
The XLNT platform is aimed at encompassing every step of the 
testing process, from designing and deploying experiments to 
analyzing them. In particular, it was built to address the following 
concerns and challenges: 

1. Scalability. We continue to see tremendous growth in both 
the number of concurrent experiments and the amount of 
data collected per experiment. The platform needs to scale to 
handle not only today’s data volume but also tomorrow’s.  

2. Incorporating Existing Practices. Over time LinkedIn 
developed many A/B testing practices. For instance, we have 
a strong tradition on targeting (Section 2.1.2) as we believe 
each one of our members is special and unique. It is 
important to incorporate these practices as part of the 
platform. 

3. Engineering Integration. The platform has to be well 
integrated into LinkedIn’s engineering infrastructure. The 
experimentation platform architecture that works at other 
companies is unlikely to work for us due to different 
structure and tooling constraints. 

4. Flexibility. Although the basic A/B testing requirements are 
similar across the organization, teams usually have their own 
special needs, given the diversity of the products they work 
on. The platform needs to offer enough flexibility to 
accommodate such customization.  

5. Usability. A/B testing is not limited only to the R&D 
organizations. To make it truly a platform for everyone, we 
needed to provide an intuitive User Interface (together with 
APIs) for designing, deploying and analyzing experiments.  

Taking these challenges into consideration, we share the details of 
the XLNT platform in this section, with the overall architecture 
outlined in Figure 4 below. 

 
Figure 4: XLNT Platform overall architecture. 



2.1 Design 
Experimental design is arguably the most important step in the 
testing workflow to get good and meaningful results. As Sir R. A. 
Fisher put it [27] “To consult the statistician after an experiment is 
finished is often merely to ask him to conduct a post mortem 
examination. He can perhaps say what the experiment died of.” 
To this end, we have built the platform to incorporate the standard 
practice at LinkedIn while providing capabilities to enable better 
designs and prevent common pitfalls. In this section, we first start 
with introducing a few key concepts that are fundamental to our 
experiment model and then focus on targeting, a critical 
component used in designing experiments at LinkedIn.  

2.1.1 Experiment Definitions 
Most experimentation terminologies used at LinkedIn are standard 
and can be found in any experimental design textbooks [28]. We 
focus here on only a few definitions that are key to our platform. 

To run an experiment, one starts by creating a testKey, which is a 
unique identifier that represents the concept or the feature to be 
tested. An actual experiment is then created as an instantiation of 
the testKey. Such hierarchical structure makes it easy to manage 
experiments at various stages of the testing process. For example, 
we want to investigate the benefits of adding a background image. 
We begin by diverting only 1% of US users to the treatment, then 
increasing the allocation to 50% and eventually expanding to 
users outside of the US market. Even though the feature being 
tested remains the same throughout the ramping process, it 
requires different experiment instances as the traffic allocations 
and targeting changes. In other words, an experiment acts as a 
realization of the testKey, and only one experiment per testKey 
can be active at a time. 

Every experiment is comprised of one or more segments, with 
each segment identifying a subpopulation to experiment on.  A 
common practice is to set up an experiment with a “whitelist” 
segment containing only the team members developing the 
product, an “internal” segment consisting of all LinkedIn 
employees and additional segments targeting external users. 
Because each segment defines its own traffic allocation, the 
treatment can be ramped to 100% in the whitelist segment, while 
still running at 1% in the external segments. Note that segment 
ordering matters because members are only considered as part of 
the first eligible segment. After the experimenters input their 
design through an intuitive User Interface, all the information is 
then concisely stored in a DSL (Domain Specific Language). For 
example, the line below indicates a single segment experiment 
targeting English-speaking users in the US where 10% of them are 
in the treatment variant while the rest in control. 
(ab	(=	(locale)	“en_US”)[treatment	10%	control	90%])	

It is important to mention that each experiment is associated with 
a hashID, which serves as an input to an MD5 based algorithm 
used to randomize users into variants. By default, all experiments 
of the same testKey share the same hashID, and different testKeys 
have different hashIDs. This ensures that a user receives 
consistent experience as we ramp up a treatment. More 
importantly, as we have hundreds of experiments running in 
parallel, different hashIDs imply that the randomizations between 
active experiments are orthogonal. The platform also allows 
manually overwriting the hashIDs, and the applicable usage cases 
will be discussed in Section 3.1.  

2.1.2 Targeting 
We recognize that not only are our products diverse, each one of 
our users is special and unique. With that in mind, many of the 

experiments we run at LinkedIn focus on how to provide the most 
improved user experience possible for specific user groups. This 
is achieved by creating different segments in an experiment 
targeting different subpopulations, as we have mentioned in 
Section 2.1.1. Deciding on the right population to target is the 
most important part of experiment design. There are three 
targeting capabilities provided by the platform:  

Built-in Member Attributes. The platform provides more than 
40 built-in member attributes for experimenters to leverage. They 
range from static attributes such as a member’s country to 
dynamic attributes such as a member’s last login date. These 
attributes are computed daily as part of our data pipelines and 
pushed to Voldemort, a distributed key-value data storage system 
[22], for real-time targeting.  

Customized Member Attributes. Frequently experimenters need 
a targeting criterion beyond the default ones provided by XLNT. 
The platform provides a seamless onboarding process to include 
member attributes generated regularly from external data 
pipelines. It is even more straightforward if this is a static list 
generated from a one-off job, as one can simply “upload” it to the 
platform. These customized attributes are pushed to Voldemort on 
a daily basis and can be used the same way as any of the built-in 
ones. 

Real-time Attributes. These attributes are only available at 
runtime, such as the browser type or mobile device. XLNT 
provides an integrated way to target using these attributes, or any 
parameters passed during a runtime request. For example, to 
target only requests coming from iPhones, one just needs to 
inform the platform that an attribute called “osName” is to be 
evaluated at runtime, and target only those with the value equal to 
“iPhone”. This feature is used extensively for mobile experiments, 
as new mobile features are usually only rolled out for particular 
mobile app versions. This is also beneficial when experimenting 
on guest users where no information is available prior to the 
request. Section 3.2.1 includes more discussions on this case.  

2.2 Deployment 
The XLNT A/B testing platform is a key component of 
LinkedIn’s Continuous Deployment framework [23]. It spans 
across every fabric and stack of LinkedIn’s engineering 
infrastructure, providing A/B testing capabilities universally. 
Once the design is completed, deploying an experiment involves 
the following two components: 

1. Application Layer. This includes any production artifacts, 
e.g. web applications and offline libraries. Each application 
requires a thick client dependency in order to run 
experiments locally, track experiment result events and 
interface with the service layer. The implementation in the 
application layer includes two parts: (1) making a simple 
one-line call to determine the variant, and (2) creating a code 
path to reflect the new variant behavior accordingly. For 
example, to decide the right color to show to a user in a 
“buttonColor” experiment, we just need to include the line 
below 

String	 color	 =	 client.getTreatment(memberID,	
"buttonColor").	

The second step is then simply changing the color of the 
button depending on the value of “color” returned above. 
This is the same across all application stacks including 
frontend, backend, mobile or even email experiments.  



2. Service Layer. This is a distributed cache and experiment 
definition provider that implements Rest.li endpoints [29]. It 
is capable of executing experiments remotely and querying 
the built-in member attributes store described in Section 
2.1.2. After the internal testing phase is passed, the 
experiment owner requests to activate the experiment. An 
SRE (Site Reliability Engineer) then reviews the 
specifications and, if no red flags are found, deploys the 
experiment to production. Experiment deployments are 
propagated via the Databus [24] relay and listeners. The new 
experiment definition is then distributed across LinkedIn’s 
service stacks with updates sent to application clients every 5 
minutes. This makes A/B testing totally independent of 
application code releases and can easily be managed through 
a centralized configuration UI. 

At runtime, a simple experiment that does not involve targeting on 
pre-defined attributes can be executed locally at the application 
layer, which takes no time delay at all. Experiments that require 
member attributes for targeting (see Section 2.1.2) are sent to 
execute at the service layer. The results are then communicated 
back to the application client with a total delay of 1msec on 
average. Because these are high throughput services with about 
20k to 30k QPS, we need to establish strict SLAs and enforce it 
with timeouts. These timeout durations can be fully customized 
according to experiment specific latencies. 

2.2.1 Logging 
To support monitoring and analysis, an event is logged during the 
“getTreatment” call at the application layer, with information such 
as the timestamp, testKey, experiment name, ID (experimental 
unit), variant, etc. These events are stored in Kafka topics [25] and 
periodically ETL’d to our HDFS clusters to be used in our data 
workflows.  

It is important to note that these experiment events are fired only 
when the “getTreatment” code is called, and not for every request 
to LinkedIn.com. This not only reduces the logs footprint, but also 
enables us to do triggered analysis, where only users who were 
actually impacted by the experiment are included in the A/B test 
analysis. For example, LinkedIn.com could have 20 million daily 
users, but only 2 million of them visited the “jobs” page where the 
experiment is actually on. Without such trigger information, it is 
hard to isolate the real impact of the experiment from the noise, 
especially for experiments with low trigger rates.  

Even with triggered logging, the volume of events generated 
presents a challenge. Currently, an average of 10 billion events are 
generated daily, and that number is growing quickly as more 
experiments are run on an increasing user base. We have visited 
the event schema and generation conditions several times in the 
past to remove derivable attributes and encode values. Continued 
effort is necessary for incremental improvement and to identifying 
new solutions addressing this challenge going forward. 

2.3 Offline Analysis 
Automated analytics is crucial in popularizing experimentation. It 
not only saves teams from time-consuming ad hoc analysis, but 
also ensures that the methodology behind the reports is solid, 
consistent and scientifically founded.  
To paint with a broad brush, the analytics pipeline computes user 
engagement metrics such as pageviews and clicks, and joins them 
with the experiment assignment information from online logs 
described in Section 2.2.1. The data are then aggregated based on 
the experiment and time range to produce summary statistics that 
are sufficient to compute not only the difference between any two 

variants, but also the statistical significance information such as p-
values and confidence intervals.  

Approximately 4TB of metrics data and 6TB of experiment 
assignment data are processed every day to produce over 150 
million summary records. Much of this computation utilizes the 
large scale joins-and-aggregations solution provided by the Cubert 
framework [34, 35]. All these data are stored in Pinot [26], our in-
house distributed storage system, to be queried by the UI 
applications. 

2.3.1 Metrics 
LinkedIn has many diverse products. Even though there are a 
handful of company metrics that everyone optimizes towards, 
every product has several product-specific metrics that are most 
likely impacted by experiments in their “area”. As LinkedIn’s 
products evolve and new products emerge, it is impossible for the 
experimentation team to create and maintain all metrics for all 
products (currently more than 1000 of them). Therefore, to 
maintain the metrics, we follow a hybrid of centralized and 
decentralized model. 

Metrics are categorized into 3 tiers: 1) Company wide 2) Product 
Specific 3) Feature Specific. A central team maintains tier 1 
metrics. Ownership of tier 2 & 3 metrics is decentralized – each 
team owns the logic for these metrics while the central team is 
responsible for the daily computation and operations. XLNT 
computes all tier 1 and tier 2 metrics for all experiments while tier 
3 metrics are only computed on an ad-hoc basis.  

2.3.2 Multi-Dimensional Deep-Dive 
When a metric is impacted, experimenters frequently want to dig 
deeper and get more actionable insights. For this reason, XLNT 
provides several slicing and dicing capabilities. Experimenters can 
leverage both user and non-user based dimensions and even apply 
multiple dimensions at once. As an example, the metric total 
pageviews can be narrowed down to homepage pageviews on the 
iOS app for Spanish speaking members across the US, South 
America and Spain. 

As one can easily imagine, this is computational extremely heavy 
especially when over 1000 metrics are involved across multiple 
days for hundreds of experiments. At a high level there are two 
use cases we need to address within experiment reporting: 1) 
Enable a broad understanding of the impact across LinkedIn 2) 
Enable a deep understanding in the areas most heavily impacted 
by the experiment. 

Knowing that this functionality clearly falls in the second use 
case, we decided to provide multi-dimensional drill-down only for 
the subset of metrics likely to be impacted by the experiment. 
Furthermore, from the dozens of dimensions available, teams 
decide what dimensions are most relevant for their experiments 
and at what level of combinations. This saves us from 
unnecessarily crunching data that is not relevant and no one uses. 
Even with such savings, our pipeline still generates about 150 
million records daily on average, where each record includes 
summary statistics for the tuple of experiment, variant, date range, 
metric and dimension combination. 

3 BEYOND THE BASICS 
We have described the components in XLNT that enable the basic 
workflow for running experiments at LinkedIn. In this section, we 
discuss, with real examples, how we address a few challenging 
scenarios. Even though the examples may be LinkedIn specific, 
most of the lessons and best practices we share here are applicable 
to experimenting on social networks in general. 



3.1 Interactions between Experiments 
As mentioned in Section 2.1, experiments at LinkedIn are fully 
overlapping by default. In other words, a member is 
simultaneously in all applicable experiments. Unique hashIDs are 
used for each experiment to ensure the randomizations between 
experiments are orthogonal. The simple parallel experimentation 
structure allows us to scale the number of experiments easily in a 
de-centralized manner. It is sufficient for most of our A/B testing 
needs as many of our experiments affect entirely different 
products and are unlikely to interfere or interact with each other. 
However, there are cases where interactions are expected. For 
example, one experiment was testing whether or not to include a 
LinkedIn Pulse module on the homepage, while simultaneously 
we had another experiment investigating the number of stories to 
include in the same module. Clearly, when the module does not 
exist, the second experiment is ineffective. Another example of 
potential interaction is between two email experiments. When a 
member receives two emails from LinkedIn, he or she is likely to 
open only one of them. Hence two email experiments both 
improving the subject line are in fact competing with each other. 
Each of them would have enjoyed a larger gain if the experiments 
were run on two disjoint user spaces. 

Google’s experimentation system uses layers and domains to 
divide up the user space to avoid such conflicts or interactions [8]. 
Microsoft Bing has a similar approach but their system includes 
detection in addition to prevention [9]. Different from these two 
systems, the XLNT platform takes a de-centralized approach that 
is closely integrated with the LinkedIn engineering infrastructure. 
We describe here how we use XLNT to address the three most 
common concerns and use cases related to interactions at 
LinkedIn. 
Gating Key. Using the LinkedIn Pulse module example, a 
testKey is created that acts as a gating key to control whether the 
module is on or off. A second testKey is then used to split the 
traffic to test different number of stories. The second testKey 
would only be evaluated if the gating key indicates that the 
module is “on”. This nested structure ensures that users do not see 
five stories without the module. The same gating key concept is 
also used to create disjoint traffic for multiple experiments. For 
instance, we always have several experiments running 
simultaneously on the homepage; some are improving the feed 
relevance while others are modifying UI elements. When one is 
concerned about potential interaction between N of them, he or 
she can create a gating key with N variants and each variant acts 
as a bucket that sends traffic only to one of the N experiments.  

Factorial Design. Even though LinkedIn has over 300 million 
members, there are product areas where the user base is relatively 
small in comparison to other parts of the site. Some of these 
products are heavily experimented on, for example, the 
Subscription acquisition page. Small UI changes on the 
subscription page can make a big difference monetarily. With 
multiple UI experiments running in parallel, there is valid concern 
regarding interference. However, splitting up the traffic makes it 
even harder to have sufficient power to detect changes. It is also 
not practical to run experiments sequentially since each 
experiment runs for at least a month to monitor long-term user 
impact. On the other hand, if we set up these experiments 
independently (the default setup) each experiment becomes a 
factor in a full factorial design. We can then analyze to see if these 
experiments do interact and if so, what their effects would be 
without interaction. Of course, if there is no significant 
interaction, each experiment can be analyzed separately and each 

gets to enjoy the full amount of traffic available for maximum 
power. 

Dependent Experiments. There are cases where people are 
interested in only certain combinations of different factors, but 
not all. For instance, we have one experiment testing the 
maximum number of sponsored updates to include in one’s feeds 
per day, while another experiment varying the gap between two 
consequent sponsored updates. What is the best combination of 
these two factors? Some combinations, for example, a maximum 
of 25 sponsored updates with a gap of 3 organic updates in 
between, should never be launched due to bad user experience. 
Testing these combinations not only wastes valuable traffic, but 
also hurts the member experience. In most cases, creating a single 
test that combines the two factors is impractical, but we can align 
them using the same hashID so that members are randomized 
identically in both experiments. We can then create the variants 
for the second experiment such that when combined with the first 
they generate the right combinations. Figure 5 illustrates the idea. 

 
Figure 5: Using the same hashID to align two experiments. 

3.2 Experimental Units 
The first decision to make when running an experiment is whom 
to run it on. The experimental unit refers to both the entity 
randomly assigned to treatment and control (randomization unit) 
and the unit metrics are calculated and averaged over (analysis 
unit). We assume these two units are the same in our discussion. 
The most common case when they do differ (e.g. computing the 
metric Click-Through-Rate when experimenting on users) is well 
discussed in the literature [8, 13] and hence omitted in this paper. 

In this section, we use guest experimentation as an example to 
discuss how XLNT supports different experimental units and 
some of the challenges we encounter. In addition, we introduce an 
interesting problem that arises particularly in a social network 
setting where the same user can play two different roles with each 
needing to be tested separately.  

3.2.1 Guest Experiments 
Most of our experiments focus on optimizing the member 
experience. However, we also run experiments on public pages 
such as the registration page and public profiles. Providing an 
excellent user experience on these pages is critical because they 
ultimately drive sign-ups.  
The XLNT platform makes it easy to run an experiment on guest 
users (or any other unit the experimenter requires). A browser ID, 
instead of a member ID, is usually used to identify guest users and 
is passed to the “getTreatment” call the same way as a member ID 
(see Section 2.2). The browser ID is associated with a different 
URN type called “guest” which is then recorded as part of the 
experiment logs (Section 2.2.1). Targeting is also possible. Even 
though there is no rich profile data associated with a browser ID, 
properties that are available at run time such as the browser type, 
or the geographic location computed by reversing the IP address 



can all be used for targeting (Section 2.1.2). Our offline analysis 
pipeline uses the URN type to differentiate between experimental 
units and automatically joins metrics with the corresponding 
experiment assignment information. This enables us to have a 
single workflow to handle analysis on various experimental units.  

One challenge is to handle transitions between member and guest 
status of the same user during an experiment. There are mainly 
two cases when this happens: a guest user becoming a member, or 
a member transitioning between logged-in and logged-out states. 
The latter is less of a concern since a member’s logged out 
activities on the site is very limited and has little influence over 
our experiments. The former, however, is of particular concern for 
experiments optimizing registration and onboarding flow as one 
unified experience. For example, we have one guest experiment 
promoting registration using the “Signup with Facebook” option, 
in which case certain information can then be automatically filled 
during the onboarding process to provide a better member 
experience. Even though the experiment is randomized on the 
browserID, we need to have a measurement based on both 
browserID and memberID. This is a common use case as 
information collected on the guest side helps us tailor the 
experience on the member side. To achieve the continuity, we can 
make a small customization on the application client (Section 2.2) 
to emit two pieces of tracking events, one based on the browserID 
(the default one) and the other on the memberID. The analysis 
workflow then automatically picks up both events and generates 
two reports, one for each ID.  

Other experimental units have their unique challenges as well. 
Take experimenting on LinkedIn groups as an example. A 
member can belong to multiple groups, so we can no longer 
assume independence between units. This presents a similar 
challenge as the network A/B testing problem to be discussed in 
Section 3.4.  

3.2.2 Dual Roles of a User 
There are different experimental units even when we only 
consider members on the site. This is the case because every 
member holds two different roles in a social network as both the 
one performing an action and the one receiving an action. For 
example, a member can view others’ profiles or receive profile 
views. Similarly, they can endorse someone or be endorsed.  

It is important to know which role we are experimenting on and 
analyze accordingly. If an experiment is randomizing on 
endorsers, endorsees are going to be evenly distributed across 
treatment and control. Therefore, analyzing the number of 
endorsements received gives no indication on how the experiment 
performs. Similarly, an experiment that encourages members to 
send more invitations should not be evaluated based on the 
number of invitations received. Essentially, even though the total 
number of actions is the same counting by either role, how the 
actions are attributed needs to be aligned with the experimental 
unit. Moreover, some attributions, such as the number of 
invitations accepted, are time-lagged, in which case we need to 
create additional metrics to capture the time dimension (e.g. 
invitation accepted by day X). 
We need to be even more careful when we have experiments 
aiming at assessing impacts on both sides. As an example, we 
recently considered allowing members to include a custom 
background image on their profile page. We wanted to evaluate 
whether members would view more profiles and receive more 
profile views. Two experiments (testKeys) were created, one 
allowing a member to upload an image (viewee experiment) and 
the other allowing a member to see the image if there is one 

(viewer experiment). However, these two experiments cannot be 
fully independent because viewer and viewee are simply opposite 
perspectives of the same member. Members who are able to 
upload background images should also be able to see them, 
especially on their own profiles. To address this issue, we applied 
the same hashID to both experiments to ensure the same treatment 
assignments. A more subtle but important point is that the 
experiment effect depends on the percentage of members 
receiving the treatment. Clearly, if only 1% of profiles have the 
background image, a viewer’s behavior is less likely to be 
impacted compared to if all profiles had a background image. 
Therefore, the bias is smallest when the treatment is ramped close 
to 100%. On the other hand, running the experiments at 50/50 
gives the least variance. It is thus a bias and variance trade-off that 
the team has to keep in mind when evaluating the experiment 
results. 

3.3 Offline Experiments 
In an online experiment, users trickle into the A/B test as they 
visit LinkedIn. The experimenter has no prior information on who 
will be in the experiment, and users’ engagement is measured 
through their activities on the site, e.g. pageviews and clicks. 
Many of the experiments we run at LinkedIn are such online 
experiments. However, because LinkedIn is a member-based 
social network, there are also many experiments that are “offline”, 
in which case the experiment users do not necessarily have an 
online activity. We walk through three scenarios below. 

Email Experiments. Emails are usually sent to members 
independent of whether they visit the online site or not. For 
example, a member would receive a notification email if another 
member sends them an invitation to connect. Not everyone who 
gets an email would come to the site. Therefore, if we only 
consider active members when analyzing an email experiment we 
are likely to introduce a bias. For instance, if the treatment email 
has a more attractive subject line that encourages more members 
to click and visit the online site, we are likely to see a drop in 
many key metrics (e.g. average pageviews) if only active 
members are taken into account because the email tends to drive 
less engaged members to visit LinkedIn. In other words, the 
experiment population cannot be determined only with online user 
activity. It needs to take into account all users who received the 
email. To make it even more complex, we also have experiments 
that attempt to reduce the email footprint by filtering out emails 
that are less relevant to members. In these cases, it is not sufficient 
to only look at users who actually receive the email, but to also 
include users who would have received the email had there been 
no relevance filtering.  

Email Campaign. We have recently revamped the Who Viewed 
My Profile page. The product team wants to measure through an 
A/B test if the new changes are indeed better, and if so, by how 
much. The marketing team wants to create a buzz around the new 
page by starting an email campaign. This is a very common 
scenario, but how can the A/B test and the email campaign 
coexist? Clearly, we can only send campaign emails to the 
treatment group as there is nothing new for members in control. 
However, this would contaminate the online A/B test because the 
campaign encourages more members from the treatment to visit. 
To make sure the experiment samples are unbiased, similar to an 
email experiment discussed earlier, we need to identify the 
matching population who would have received the email in the 
control group as well. For instance, if the emails are sent to 
treatment members selected through process X, the same process 
needs to be applied to the control group to select those who would 



have received the email if they were in treatment. It is important 
to note that even though these two populations are unbiased, the 
difference between the two populations is no longer just the effect 
of the newer page, but a compounded effect of both the email 
campaign and the new page. It may be a subtle point, but this 
combination is in fact a better representation of the final impact 
we would like to measure from launching the new page. It is, 
however, crucial to realize that email campaigns have a strong 
novelty effect that dies out over time, so we need to keep the 
experiment running for a longer time period till the effect 
stabilizes. There are also occasions where one wants to measure 
the impact of these two factors separately, in which case we 
would either create a separate treatment bucket that receives no 
email campaign, or measure the A/B test first before setting off 
the campaign. 
Cohort Experiments. It is common practice at LinkedIn to run 
A/B tests on a cohort of members who are pre-selected offline. As 
an example, we tested a new feature where members get a push 
notification on their LinkedIn profile page if they have not visited 
the homepage for a while. The first thing the experimenter did 
was to gather a list of members who have not visited the 
homepage for more than 7 days and used it to create a customized 
targeting attribute (Section 2.1.2). These targeted members are 
then split between treatment and control, and the notification was 
presented to only members in the treatment cohort. Such cohort 
experimentation is a great way to leverage the capability of the 
XLNT platform to test out ideas without having to build a full-
fledged product. Another advantage of cohort experiments is to be 
able to measure long-term member impact without the dilution of 
members newly added to experiments. However, one common 
pitfall is that people try to update the cohort selection during the 
experiment, while the selection criteria is directly related to the 
experiment outcome. In the push notification example, the 
treatment encourages more members to visit LinkedIn homepage, 
though once a member visits the homepage, he or she would 
disappear from the updated cohort list. Therefore the updated 
treatment bucket would end up with fewer members which creates 
a bias. Our suggestion is to use a static cohort or to include the 
previous cohort in the analysis if an update is necessary. 

3.4 Network A/B Testing 
In our discussion thus far, we have assumed the Rubin causal 
model [1], a standard machinery of testing framework, when 
conducting and analyzing A/B tests. A key assumption made in 
Rubin causal model is the “Stable Unit Treatment Value 
Assumption” (SUTVA), which states that the behavior of each 
sample in the experiment depends only on their own treatment and 
not on the treatments of others.  

This is a plausible assumption in most practical applications. For 
example, a user who is served better search results is more likely 
to click, and that behavior is entirely independent of others using 
the same search engine. However, such assumption does not 
always hold in experiments run on social networks. In a social 
network setting, a user’s behavior is likely impacted by that of 
their social neighborhood [2, 3, 4]. In most cases, a user would 
find a new feature more valuable and hence more likely to adopt it 
as more of their neighbors adopt it. For example, video chat is a 
useless feature unless one’s friends use it too. In an A/B 
experiment, this implies that if the treatment has a significant 
impact on a user, the effect would spill over to his/her social 
circles, regardless whether his/her neighbors are in treatment or 
control.  

This poses a special challenge for running A/B tests in many 
online social and professional networks like Facebook, Twitter 
and LinkedIn. Many features tested there are likely to have 
network effects. For example, a better recommendation algorithm 
in treatment for the People You May Know module on LinkedIn 
encourages a user to send more invitations. However, users who 
receive such invitations can be in the control variant and when 
they visit LinkedIn to accept the invitation they may discover 
more people they know. If the primary metric of interest were the 
total number of invitations sent, we would see a positive gain in 
both the treatment and the control groups. The treatment effect 
estimated ignoring network effect would be biased and would not 
fully capture the benefit of the new algorithm. Such bias exists in 
testing almost any features that involve social interactions, which 
is truly ubiquitous in a social network environment. 
To address this challenge, we need to take users’ network 
connections into consideration when sampling them into treatment 
and control [19]. Essentially, we take the following two-stage 
procedure: 

1. Partition the users into clusters. 
2. Treat each cluster as a unit for randomization so all users in 

one cluster have the same experiment assignment. 

The estimation for the treatment effect can then be based on either 
the sample means, or more sophisticated estimators summarized 
in [19].  We have noticed strong network effects from the network 
A/B tests we have run at LinkedIn based on this sampling and 
estimation framework. 

4 FOSTERING AN EXPERIMENTATION 
CULTURE 

Running large scale A/B tests is not just a matter of infrastructure 
and best practices, establishing a strong experimentation culture is 
also key to embedding A/B testing as part of the decision making 
process. Apart from building the basic functionalities any A/B 
testing platform requires, we have identified four necessary 
ingredients that have helped us instill experimentation deeply into 
our culture at LinkedIn. We share them in the rest of the section. 

4.1 Integration with Business Reporting  
XLNT produces over 1000 metrics for A/B test reports. Similar 
metrics are often used in business reporting for decision making 
as well. These two sets of metrics used to be computed separately 
and much effort was spent on investigating differences when they 
happened. 

We realized the importance of using the same definitions of 
metrics across reporting and experimentation, and hence have 
worked with various teams at LinkedIn to evolve our metrics 
pipeline to be the unified metrics pipeline leveraged by the entire 
company. By making our experiment results and business reports 
“comparable”, we have made it possible for R&D teams to relate 
changes in business numbers with experiment launches. 
Moreover, the integration also provides the foundation that 
enables other organizations such as Finance to bake A/B test 
results into business forecasting. 

4.2 Leveraging Site Wide Impact 
In addition to providing product development with a directional 
signal, A/B testing is often utilized to measure impact and assess 
ROI (Return-On-Investment). A report based on triggered analysis 
(Section 2.2.1) is great at providing a directional signal, however, 
it does not accurately represent the global lift that will occur when 
the winning treatment is ramped to 100% (holding everything else 
constant). The reason is two-fold: 1) Most experiments only target 



a subset of the entire user population. 2) Most experiments only 
trigger for a subset of their targeted population. In other words, 
triggered analysis only provides evaluation of the local impact, 
not the global impact of an experiment. 

To address this concern, we compute the Site Wide Impact, 
defined as the percentage delta between two parallel universes: 
one with treatment applied to only targeted users and control to 
the rest, the other with control applied to all. With site wide 
impact provided for all experiments, teams are able to compare 
results across experiments regardless of their targeting and 
triggering conditions. Moreover, Site Wide Impact from multiple 
segments of the same experiment can be added up to give an 
assessment of the total impact, which is particularly helpful when 
each segment is running at different percentages and has to be 
analyzed separately to avoid Simpson’s Paradox [31]. 

However, computing Site Wide Impact explicitly for every metric 
and report we generate would be more than doubling our current 
computation effort. It turns out that Site Wide Impact depends 
only on (1) the summary statistics that are already computed as 
part of the triggered report, and (2) the global total with a 
matching analysis date range as the experiment report (see 
Appendix A). For most of our metrics that are additive across 
days, we can simply keep a daily counter of the global total and 
add them up for any arbitrary date range. However, there are 
metrics, such as the number of unique visitors, which are not 
additive across days. Instead of computing the global total for all 
date ranges we generate reports for (an O(n2) problem), we 
estimate them based on the daily totals (see Appendix A for more 
details), saving more than 99% of the computation cost without 
sacrificing much accuracy. 

One interesting phenomenon we observe is that the local impact 
(percentage delta from triggered analysis) and the Site Wide 
Impact can sometimes disagree directionally for ratio metrics such 
as CTR. For example, in a recent experiment testing “connection 
request” emails targeting English speaking members with fewer 
than 50 connections, we observed a -9.4% local impact on CTR 
while a +0.5% Site Wide Impact. Mathematically, this is an 
instance of Simpon’s Paradox as the overall site wide CTR is 
essentially a linear combination of the within-segment and 
outside-segment CTR. The real challenge, however, is to decide 
which number to use for decision making. We believe that even 
though Site Wide Impact has a stronger business implication, the 
local impact is a better indication of user satisfaction in this case.  

4.3 Simplifying Multiple Testing  
Multiple testing is a common problem in the field of A/B testing 
[30] and LinkedIn is no exception. With over 1000 metrics 
computed for each experiment, this issue is so prevalent that the 
most common question we hear from experimenters is  “why is 
this irrelevant metric significant?”  

Even though we have tried to educate people on the topic of 
multiple testing, many are still clueless as what they should do 
when a metric is unexpectedly significant. What’s worse, some 
people even lost trust in our A/B reports because they couldn’t tell 
whether a metric is moved for real or simply due to multiple 
testing. 

To this end, we have come up with a two-step rule-of-thumb for 
experimenters to follow:  

1. Divide all metrics into three groups: 1) First order metrics are 
those expected to be impacted by the experiment; 2) Second 
order metrics are those potentially impacted, e.g. through 

cannibalization; 3) Third order metrics are those unlikely to 
be impacted.  

2. Apply tiered significance levels to each group. We 
recommend our experimenters to use 0.05, 0.01 and 0.001 
respectively. 

Our rule-of-thumb is in fact based on an interesting Bayesian 
interpretation. It boils down to how much we believe the null 
hypothesis (H0) is true before we even run the experiment. 
Believing that the posterior probability on H0 should be consistent 
across all metrics, given different priors on H0, we essentially vary 
the probability of observing the data given H0, which is the 
definition of p-value in the frequentist interpretation. Since the 
significance level is the cutoff used for p-values, this leads to 
adjusting the thresholds accordingly. In particular, the three 
significance levels 0.05, 0.01 and 0.001 reflect that we believe an 
experiment having a prior probability of 1/2, 1/6 and 1/51 
impacting each of the three metric groups. 
This interpretation establishes a simple mathematical equivalence 
between people’s prior belief on whether a metric is impacted and 
the significance level. Thus for those who are a bit more 
sophisticated they can easily come up with their own significance 
level tiers to match their prior beliefs.  

4.4 Tracking the Most Impactful 
Experiments 

LinkedIn is a deeply interconnected site. When it comes to 
experimentation, each team in fact plays two different roles. On 
the one hand, they run experiments to improve their metrics; on 
the other hand, they are also responsible for the global health of 
the same metrics, even when they may be impacted by 
experiments from other teams. Recognizing the importance of the 
second responsibility, we launched a feature called “Most 
Impactful Experiments” (MIE) to allow metric owners to follow 
experiments that impact the metrics they care about.  
MIE is a major milestone for experimentation at LinkedIn. Not 
only does it drive greater transparency regarding experiment 
launch decisions, it also encourages more discussions to occur 
which in turn increases the overall knowledge of experimentation 
in the company.  

To ensure MIE only listed the most relevant experiments, we use 
the following three-step algorithm:  

1. Filter out all the experiments that have potential quality 
issues based on our alerting system. 

2. For each metric, control False Discovery Rate using the 
Benjamini-Hochberg algorithm [17]. 

3. Score the experiments from step 2 based on three factors: 
Site Wide Impact, treatment percentage and experiment 
duration. These factors are then combined using the 
Analytical Hierarchy Process [18]. To scale to over 1000 
metrics, we use empirical cumulative density functions to 
automatically control the fraction of experiments selected for 
each metric. Furthermore, historical experiments are used to 
ensure the relevance of selected experiments is not affected 
by the number of high-impact experiments available at any 
given time.  

There are a couple of interesting observations and lessons learnt 
while developing this capability: 

• Large Initial Impact. We observed that it is common for 
newly activated experiments to have overly positive or 
negative impacts. However, for these experiments the impact 
tends to shrink over time or become statistically 



insignificant. While such scenario can be due to novelty 
effect, most of them are just statistical artifact as explained in 
[7]. Controlling the false positive rate was helpful in 
eliminating these, but to further alleviate the problem, we 
only consider experiments with results over at least three 
days and penalize short experiments in our ranking 
algorithm. 

• Personalizing Threshold. Picking the optimal threshold 
presents a challenging trade-off between precision and recall. 
Interestingly, three months after launching MIE, we have 
noticed that there are two well-separated groups of users. The 
first group is the functional users, including engineers, 
product managers and data scientists who themselves own 
experiments. The second group is the managerial users, 
including top-level managers and executives. Most users 
from the first group tend to follow metrics that are mostly 
impacted by their experiments. A higher recall can allow 
them to see more experiments beyond the ones they own.  On 
the other hand, we want to keep a higher threshold for the 
second group of users to maintain a high precision. 

5 CONCLUSION 
In this paper, we shared the details of building a powerful and 
flexible experimentation platform that enables teams across 
LinkedIn to make informed decisions faster and at scale. 
Furthermore, we discussed several challenging A/B testing 
scenarios and shared many real examples applicable to social 
networks. Realizing the importance of a strong experimentation 
culture, we discussed four ingredients that helps us instill 
experimentation deeply into every decision making process at 
LinkedIn, even across roles outside of R&D.  
One challenge we have not discussed here is how to provide 
guided insights to the experiment owners. Traditionally, 
controlled experiments have been used to answer “what” has been 
impacted, but not to answer “why”. By utilizing the amount of 
information we have available for each experiment, in terms of 
both the metrics and dimensions, we hope to automatically 
generate insights that can better guide product development. 

There are also cases where it is not possible to run an A/B test due 
to practical reasons, so we have to leverage quasi-experimental 
designs where users in treatment and control groups are matched 
post hoc using techniques such as propensity score matching.     

Lastly, we hope that the topics we covered will lead to further 
research and development of A/B testing in large scale social 
networks. 
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APPENDIX 
A. Site Wide Impact 
We use the average number of clicks as an example metric to 
show how we compute Site Wide Impact. Let Let 
𝑋! ,𝑋! ,𝑋!"#𝑎𝑛𝑑 𝑋!"#$%" denote the total number of clicks in the 
treatment group, the control group, the whole segment (including 
the treatment, the control and potentially other variants) and 
globally across the site, respectively. Similarly, let 
𝑛! ,𝑛! ,𝑛!"#𝑎𝑛𝑑 𝑛!"#$%" denote the sample sizes for each of the 
four groups mentioned above. 

It is easy to see that the total number of clicks in the treatment 
(control) universe can be estimated as 

𝑋!"#$%&'(& =
𝑋!
𝑛!
𝑛!"# + (𝑋!"#$%" − 𝑋!"#) 

𝑋!"#$%&'(& =
𝑋!
𝑛!
𝑛!"# + (𝑋!"#$%" − 𝑋!"#) 

Then the Site Wide Impact is computed as 

𝑆𝑊𝐼 =  (
𝑋!"#$%&'(&
𝑛!"#$%&'(&

−  
𝑋!"#$%&'(&
𝑛!"#$%&'(&

)/  
𝑋!"#$%&'(&
𝑛!"#$%&'(&

 

                         

       = ( 

𝑋!
𝑛!
− 𝑋!𝑛!
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𝑛!

)×(

𝑋!
𝑛!
𝑛!"#

𝑋!
𝑛!
𝑛!"# + 𝑋!"#$%" − 𝑋!"#

) 

                         = 𝛥 × 𝛼 

which indicates that the Site Wide Impact is essentially the local 
impact 𝛥 scaled by a factor of 𝛼, and 𝑋!"#$%" is the only ingredient 
that is not already computed as part of summary statistics for the 
triggered analysis. 
For metrics such as average number of clicks, 𝑋!"#$%" for any 
arbitrary date range can be computed by summing over clicks 
from corresponding single days. However, for metrics such as 
average number of unique visitors, de-duplication is necessary 
across days. To avoid having to compute 𝛼 for all date ranges we 
generate reports for, we estimate cross-day 𝛼 by averaging the 
single-day 𝛼’s. 

There is one other group of metrics that are ratio of two metrics. 
One example is Click-Through-Rate, which equals Clicks over 
Impressions. The derivation of Site Wide Impact for ratio metrics 
is similar, with the sample size replaced by the denominator 
metric.

 


