
From Infrastructure to Culture: A/B Testing Challenges in
Large Scale Social Networks

Ya Xu, Nanyu Chen, Adrian Fernandez, Omar Sinno, Anmol Bhasin
LinkedIn Corp, 2029 Stierlin Court, Mountain View, CA 94043

{yaxu, nchen, afernandez, osinno, abhasin}@linkedin.com

ABSTRACT

A/B testing, also known as bucket testing, split testing, or
controlled experiment, is a standard way to evaluate user
engagement or satisfaction from a new service, feature, or
product. It is widely used among online websites, including social
network sites such as Facebook, LinkedIn, and Twitter to make
data-driven decisions. At LinkedIn, we have seen tremendous
growth of controlled experiments over time, with now over 400
concurrent experiments running per day. General A/B testing
frameworks and methodologies, including challenges and pitfalls,
have been discussed extensively in several previous KDD work
[7, 8, 9, 10]. In this paper, we describe in depth the
experimentation platform we have built at LinkedIn and the
challenges that arise particularly when running A/B tests at large
scale in a social network setting. We start with an introduction of
the experimentation platform and how it is built to handle each
step of the A/B testing process at LinkedIn, from designing and
deploying experiments to analyzing them. It is then followed by
discussions on several more sophisticated A/B testing scenarios,
such as running offline experiments and addressing the network
effect, where one user’s action can influence that of another.
Lastly, we talk about features and processes that are crucial for
building a strong experimentation culture.

Categories and Subject Descriptors
G.3 Probability and Statistics/Experimental Design: controlled
experiments, randomized experiments, A/B testing.

General Terms
Measurement, Design, Experimentation

Keywords
Controlled experiments, A/B testing, social network, online
experiments, network A/B testing, measurement.

1 INTRODUCTION
A/B testing, also called controlled experiment, has become the
gold standard for evaluating new product strategies and
approaches in many internet companies, including Amazon, eBay,
Etsy, Facebook, Google, Groupon, LinkedIn, Microsoft, Netflix
and Yahoo [9, 10]. As experimentation gains popularity, so does
the need for properly designing, managing and analyzing

experiments.
The theory of controlled experiment dates back to Sir Ronald A.
Fisher’s experiments at the Rothamsted Agricultural Experimental
Station in England in the 1920s [11]. Since then, many textbooks
and papers from different fields have provided theoretical
foundations [20, 21, 32, 33] for running controlled experiments.
While the theory may be straightforward, the deployment and
mining of experiments in practice and at scale can be complex and
challenging [13, 14]. In particular, several past KDD papers have
discussed at length the experimentation systems used at Microsoft
Bing and Google [8, 9], including best practices and pitfalls [7,
10]. Facebook also introduces the PlanOut language which
provides a toolkit for parameter-based experiments [12].

At a high level, we follow similar practices and methodology for
experimentation at LinkedIn. However, many of the challenges
we face arise particularly because LinkedIn is a member-based
social network (we call our logged-in users “members”). In this
paper, we focus on how we address these challenges as we scale
to run more experiments. We share how we built XLNT
(pronounced “excellent”), the end-to-end A/B testing platform at
LinkedIn, to not only meet the day-to-day A/B testing needs
across the company, but to also address more sophisticated use
cases that are prevalent in a social network setting.
When we launched XLNT, the platform only supported about 50
experiments per day. Today, that number has increased to more
than 400. The number of metrics supported has grown from 60 to
more than 1000. Such tremendous growth is not only attributed to
our scalable platform but also to our continuous emphasis on
embedding experimentation deeply into LinkedIn’s decision-
making process and culture. We include in the paper several
XLNT features we built to enable us to take education and
evangelization past the “classroom”.

A/B testing is truly the driver behind LinkedIn’s product
innovation. The areas we experiment on are extremely diverse,
ranging from visual changes on our home page, to improvements
on our job recommendation algorithm, to personalizing the
subject line of our emails. We begin this paper with two example
experiments that we recently ran.

Figure 1: Guided edit experiment on profiles.

The first experiment was on members’ profile pages (Figure 1). In
order to encourage members to better establish their professional
identity, we displayed a small module at the top of their profile.
The experiment was to include an additional line of text to call out
the benefits and values a complete profile provides. For instance,
the example in Figure 1 encourages members to add volunteer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

KDD '15, August 11 - 14, 2015, Sydney, NSW, Australia

experience to their profile. This small change turned out to be
extremely successful. Results from the A/B test showed a 14%
increase in profile edits on volunteer experience!

Another experiment was an entire redesign of the Premium
Subscription’s payment flow (Figure 2). Apart from providing a
cleaner look and feel, we reduced the number of payment
checkout pages and added an FAQ. The experiment showed an
increase of millions of dollars in annualized bookings, about 30%
reduction in refund orders and over 10% lift in free trial orders.

Figure 2: New Premium Subscription payment flow.

In both cases, the XLNT platform made it feasible to quickly
measure the impact of both small and large changes at low cost.
This enables us to identify features with a high Return-On-
Investment (ROI) and moreover, to quantify the impact in a
scientific and controlled manner. A screen shot of our analysis
dashboard is shown in Figure 3.

Figure 3: XLNT analysis dashboard.

Here is a summary of our contributions in this paper:

• We share the details of how we built our experimentation
platform, including the engineering challenges we faced and
how we addressed them.

• We discuss several challenging A/B testing scenarios we face
at LinkedIn. Some of these challenges, particularly the ones
that are specific to experimentation on social networks, are
discussed and shared in a public paper for the first time.

• We discuss several concepts and novel features we
introduced at LinkedIn that have significantly shaped our
experimentation culture.

• Many real A/B test examples are shared for the first time in
public. Even though the examples may be LinkedIn specific,
most of the lessons and best practices we share are applicable
to experimenting on social networks in general.

The paper is organized as follows. Section 2 introduces XLNT
and how it is built to address several fundamental challenges.
Section 3 discusses several more sophisticated A/B testing use
cases. Section 4 discusses the XLNT features that help create a
stronger experimentation culture and Section 5 concludes.

2 THE XLNT PLATFORM
We realized early on that ad-hoc A/B testing was not a scalable
approach to sustain the high speed of innovation at LinkedIn. We
required an A/B testing platform to allow us to quickly quantify
the impact of features. Additionally, this needed to be achieved in
a scientific and controlled manner across the company. Thus, we
built XLNT.
The XLNT platform is aimed at encompassing every step of the
testing process, from designing and deploying experiments to
analyzing them. In particular, it was built to address the following
concerns and challenges:

1. Scalability. We continue to see tremendous growth in both
the number of concurrent experiments and the amount of
data collected per experiment. The platform needs to scale to
handle not only today’s data volume but also tomorrow’s.

2. Incorporating Existing Practices. Over time LinkedIn
developed many A/B testing practices. For instance, we have
a strong tradition on targeting (Section 2.1.2) as we believe
each one of our members is special and unique. It is
important to incorporate these practices as part of the
platform.

3. Engineering Integration. The platform has to be well
integrated into LinkedIn’s engineering infrastructure. The
experimentation platform architecture that works at other
companies is unlikely to work for us due to different
structure and tooling constraints.

4. Flexibility. Although the basic A/B testing requirements are
similar across the organization, teams usually have their own
special needs, given the diversity of the products they work
on. The platform needs to offer enough flexibility to
accommodate such customization.

5. Usability. A/B testing is not limited only to the R&D
organizations. To make it truly a platform for everyone, we
needed to provide an intuitive User Interface (together with
APIs) for designing, deploying and analyzing experiments.

Taking these challenges into consideration, we share the details of
the XLNT platform in this section, with the overall architecture
outlined in Figure 4 below.

Figure 4: XLNT Platform overall architecture.

2.1 Design
Experimental design is arguably the most important step in the
testing workflow to get good and meaningful results. As Sir R. A.
Fisher put it [27] “To consult the statistician after an experiment is
finished is often merely to ask him to conduct a post mortem
examination. He can perhaps say what the experiment died of.”
To this end, we have built the platform to incorporate the standard
practice at LinkedIn while providing capabilities to enable better
designs and prevent common pitfalls. In this section, we first start
with introducing a few key concepts that are fundamental to our
experiment model and then focus on targeting, a critical
component used in designing experiments at LinkedIn.

2.1.1 Experiment Definitions
Most experimentation terminologies used at LinkedIn are standard
and can be found in any experimental design textbooks [28]. We
focus here on only a few definitions that are key to our platform.

To run an experiment, one starts by creating a testKey, which is a
unique identifier that represents the concept or the feature to be
tested. An actual experiment is then created as an instantiation of
the testKey. Such hierarchical structure makes it easy to manage
experiments at various stages of the testing process. For example,
we want to investigate the benefits of adding a background image.
We begin by diverting only 1% of US users to the treatment, then
increasing the allocation to 50% and eventually expanding to
users outside of the US market. Even though the feature being
tested remains the same throughout the ramping process, it
requires different experiment instances as the traffic allocations
and targeting changes. In other words, an experiment acts as a
realization of the testKey, and only one experiment per testKey
can be active at a time.

Every experiment is comprised of one or more segments, with
each segment identifying a subpopulation to experiment on. A
common practice is to set up an experiment with a “whitelist”
segment containing only the team members developing the
product, an “internal” segment consisting of all LinkedIn
employees and additional segments targeting external users.
Because each segment defines its own traffic allocation, the
treatment can be ramped to 100% in the whitelist segment, while
still running at 1% in the external segments. Note that segment
ordering matters because members are only considered as part of
the first eligible segment. After the experimenters input their
design through an intuitive User Interface, all the information is
then concisely stored in a DSL (Domain Specific Language). For
example, the line below indicates a single segment experiment
targeting English-speaking users in the US where 10% of them are
in the treatment variant while the rest in control.
(ab	(=	(locale)	“en_US”)[treatment	10%	control	90%])	

It is important to mention that each experiment is associated with
a hashID, which serves as an input to an MD5 based algorithm
used to randomize users into variants. By default, all experiments
of the same testKey share the same hashID, and different testKeys
have different hashIDs. This ensures that a user receives
consistent experience as we ramp up a treatment. More
importantly, as we have hundreds of experiments running in
parallel, different hashIDs imply that the randomizations between
active experiments are orthogonal. The platform also allows
manually overwriting the hashIDs, and the applicable usage cases
will be discussed in Section 3.1.

2.1.2 Targeting
We recognize that not only are our products diverse, each one of
our users is special and unique. With that in mind, many of the

experiments we run at LinkedIn focus on how to provide the most
improved user experience possible for specific user groups. This
is achieved by creating different segments in an experiment
targeting different subpopulations, as we have mentioned in
Section 2.1.1. Deciding on the right population to target is the
most important part of experiment design. There are three
targeting capabilities provided by the platform:

Built-in Member Attributes. The platform provides more than
40 built-in member attributes for experimenters to leverage. They
range from static attributes such as a member’s country to
dynamic attributes such as a member’s last login date. These
attributes are computed daily as part of our data pipelines and
pushed to Voldemort, a distributed key-value data storage system
[22], for real-time targeting.

Customized Member Attributes. Frequently experimenters need
a targeting criterion beyond the default ones provided by XLNT.
The platform provides a seamless onboarding process to include
member attributes generated regularly from external data
pipelines. It is even more straightforward if this is a static list
generated from a one-off job, as one can simply “upload” it to the
platform. These customized attributes are pushed to Voldemort on
a daily basis and can be used the same way as any of the built-in
ones.

Real-time Attributes. These attributes are only available at
runtime, such as the browser type or mobile device. XLNT
provides an integrated way to target using these attributes, or any
parameters passed during a runtime request. For example, to
target only requests coming from iPhones, one just needs to
inform the platform that an attribute called “osName” is to be
evaluated at runtime, and target only those with the value equal to
“iPhone”. This feature is used extensively for mobile experiments,
as new mobile features are usually only rolled out for particular
mobile app versions. This is also beneficial when experimenting
on guest users where no information is available prior to the
request. Section 3.2.1 includes more discussions on this case.

2.2 Deployment
The XLNT A/B testing platform is a key component of
LinkedIn’s Continuous Deployment framework [23]. It spans
across every fabric and stack of LinkedIn’s engineering
infrastructure, providing A/B testing capabilities universally.
Once the design is completed, deploying an experiment involves
the following two components:

1. Application Layer. This includes any production artifacts,
e.g. web applications and offline libraries. Each application
requires a thick client dependency in order to run
experiments locally, track experiment result events and
interface with the service layer. The implementation in the
application layer includes two parts: (1) making a simple
one-line call to determine the variant, and (2) creating a code
path to reflect the new variant behavior accordingly. For
example, to decide the right color to show to a user in a
“buttonColor” experiment, we just need to include the line
below

String	 color	 =	 client.getTreatment(memberID,	
"buttonColor").	

The second step is then simply changing the color of the
button depending on the value of “color” returned above.
This is the same across all application stacks including
frontend, backend, mobile or even email experiments.

2. Service Layer. This is a distributed cache and experiment
definition provider that implements Rest.li endpoints [29]. It
is capable of executing experiments remotely and querying
the built-in member attributes store described in Section
2.1.2. After the internal testing phase is passed, the
experiment owner requests to activate the experiment. An
SRE (Site Reliability Engineer) then reviews the
specifications and, if no red flags are found, deploys the
experiment to production. Experiment deployments are
propagated via the Databus [24] relay and listeners. The new
experiment definition is then distributed across LinkedIn’s
service stacks with updates sent to application clients every 5
minutes. This makes A/B testing totally independent of
application code releases and can easily be managed through
a centralized configuration UI.

At runtime, a simple experiment that does not involve targeting on
pre-defined attributes can be executed locally at the application
layer, which takes no time delay at all. Experiments that require
member attributes for targeting (see Section 2.1.2) are sent to
execute at the service layer. The results are then communicated
back to the application client with a total delay of 1msec on
average. Because these are high throughput services with about
20k to 30k QPS, we need to establish strict SLAs and enforce it
with timeouts. These timeout durations can be fully customized
according to experiment specific latencies.

2.2.1 Logging
To support monitoring and analysis, an event is logged during the
“getTreatment” call at the application layer, with information such
as the timestamp, testKey, experiment name, ID (experimental
unit), variant, etc. These events are stored in Kafka topics [25] and
periodically ETL’d to our HDFS clusters to be used in our data
workflows.

It is important to note that these experiment events are fired only
when the “getTreatment” code is called, and not for every request
to LinkedIn.com. This not only reduces the logs footprint, but also
enables us to do triggered analysis, where only users who were
actually impacted by the experiment are included in the A/B test
analysis. For example, LinkedIn.com could have 20 million daily
users, but only 2 million of them visited the “jobs” page where the
experiment is actually on. Without such trigger information, it is
hard to isolate the real impact of the experiment from the noise,
especially for experiments with low trigger rates.

Even with triggered logging, the volume of events generated
presents a challenge. Currently, an average of 10 billion events are
generated daily, and that number is growing quickly as more
experiments are run on an increasing user base. We have visited
the event schema and generation conditions several times in the
past to remove derivable attributes and encode values. Continued
effort is necessary for incremental improvement and to identifying
new solutions addressing this challenge going forward.

2.3 Offline Analysis
Automated analytics is crucial in popularizing experimentation. It
not only saves teams from time-consuming ad hoc analysis, but
also ensures that the methodology behind the reports is solid,
consistent and scientifically founded.
To paint with a broad brush, the analytics pipeline computes user
engagement metrics such as pageviews and clicks, and joins them
with the experiment assignment information from online logs
described in Section 2.2.1. The data are then aggregated based on
the experiment and time range to produce summary statistics that
are sufficient to compute not only the difference between any two

variants, but also the statistical significance information such as p-
values and confidence intervals.

Approximately 4TB of metrics data and 6TB of experiment
assignment data are processed every day to produce over 150
million summary records. Much of this computation utilizes the
large scale joins-and-aggregations solution provided by the Cubert
framework [34, 35]. All these data are stored in Pinot [26], our in-
house distributed storage system, to be queried by the UI
applications.

2.3.1 Metrics
LinkedIn has many diverse products. Even though there are a
handful of company metrics that everyone optimizes towards,
every product has several product-specific metrics that are most
likely impacted by experiments in their “area”. As LinkedIn’s
products evolve and new products emerge, it is impossible for the
experimentation team to create and maintain all metrics for all
products (currently more than 1000 of them). Therefore, to
maintain the metrics, we follow a hybrid of centralized and
decentralized model.

Metrics are categorized into 3 tiers: 1) Company wide 2) Product
Specific 3) Feature Specific. A central team maintains tier 1
metrics. Ownership of tier 2 & 3 metrics is decentralized – each
team owns the logic for these metrics while the central team is
responsible for the daily computation and operations. XLNT
computes all tier 1 and tier 2 metrics for all experiments while tier
3 metrics are only computed on an ad-hoc basis.

2.3.2 Multi-Dimensional Deep-Dive
When a metric is impacted, experimenters frequently want to dig
deeper and get more actionable insights. For this reason, XLNT
provides several slicing and dicing capabilities. Experimenters can
leverage both user and non-user based dimensions and even apply
multiple dimensions at once. As an example, the metric total
pageviews can be narrowed down to homepage pageviews on the
iOS app for Spanish speaking members across the US, South
America and Spain.

As one can easily imagine, this is computational extremely heavy
especially when over 1000 metrics are involved across multiple
days for hundreds of experiments. At a high level there are two
use cases we need to address within experiment reporting: 1)
Enable a broad understanding of the impact across LinkedIn 2)
Enable a deep understanding in the areas most heavily impacted
by the experiment.

Knowing that this functionality clearly falls in the second use
case, we decided to provide multi-dimensional drill-down only for
the subset of metrics likely to be impacted by the experiment.
Furthermore, from the dozens of dimensions available, teams
decide what dimensions are most relevant for their experiments
and at what level of combinations. This saves us from
unnecessarily crunching data that is not relevant and no one uses.
Even with such savings, our pipeline still generates about 150
million records daily on average, where each record includes
summary statistics for the tuple of experiment, variant, date range,
metric and dimension combination.

3 BEYOND THE BASICS
We have described the components in XLNT that enable the basic
workflow for running experiments at LinkedIn. In this section, we
discuss, with real examples, how we address a few challenging
scenarios. Even though the examples may be LinkedIn specific,
most of the lessons and best practices we share here are applicable
to experimenting on social networks in general.

3.1 Interactions between Experiments
As mentioned in Section 2.1, experiments at LinkedIn are fully
overlapping by default. In other words, a member is
simultaneously in all applicable experiments. Unique hashIDs are
used for each experiment to ensure the randomizations between
experiments are orthogonal. The simple parallel experimentation
structure allows us to scale the number of experiments easily in a
de-centralized manner. It is sufficient for most of our A/B testing
needs as many of our experiments affect entirely different
products and are unlikely to interfere or interact with each other.
However, there are cases where interactions are expected. For
example, one experiment was testing whether or not to include a
LinkedIn Pulse module on the homepage, while simultaneously
we had another experiment investigating the number of stories to
include in the same module. Clearly, when the module does not
exist, the second experiment is ineffective. Another example of
potential interaction is between two email experiments. When a
member receives two emails from LinkedIn, he or she is likely to
open only one of them. Hence two email experiments both
improving the subject line are in fact competing with each other.
Each of them would have enjoyed a larger gain if the experiments
were run on two disjoint user spaces.

Google’s experimentation system uses layers and domains to
divide up the user space to avoid such conflicts or interactions [8].
Microsoft Bing has a similar approach but their system includes
detection in addition to prevention [9]. Different from these two
systems, the XLNT platform takes a de-centralized approach that
is closely integrated with the LinkedIn engineering infrastructure.
We describe here how we use XLNT to address the three most
common concerns and use cases related to interactions at
LinkedIn.
Gating Key. Using the LinkedIn Pulse module example, a
testKey is created that acts as a gating key to control whether the
module is on or off. A second testKey is then used to split the
traffic to test different number of stories. The second testKey
would only be evaluated if the gating key indicates that the
module is “on”. This nested structure ensures that users do not see
five stories without the module. The same gating key concept is
also used to create disjoint traffic for multiple experiments. For
instance, we always have several experiments running
simultaneously on the homepage; some are improving the feed
relevance while others are modifying UI elements. When one is
concerned about potential interaction between N of them, he or
she can create a gating key with N variants and each variant acts
as a bucket that sends traffic only to one of the N experiments.

Factorial Design. Even though LinkedIn has over 300 million
members, there are product areas where the user base is relatively
small in comparison to other parts of the site. Some of these
products are heavily experimented on, for example, the
Subscription acquisition page. Small UI changes on the
subscription page can make a big difference monetarily. With
multiple UI experiments running in parallel, there is valid concern
regarding interference. However, splitting up the traffic makes it
even harder to have sufficient power to detect changes. It is also
not practical to run experiments sequentially since each
experiment runs for at least a month to monitor long-term user
impact. On the other hand, if we set up these experiments
independently (the default setup) each experiment becomes a
factor in a full factorial design. We can then analyze to see if these
experiments do interact and if so, what their effects would be
without interaction. Of course, if there is no significant
interaction, each experiment can be analyzed separately and each

gets to enjoy the full amount of traffic available for maximum
power.

Dependent Experiments. There are cases where people are
interested in only certain combinations of different factors, but
not all. For instance, we have one experiment testing the
maximum number of sponsored updates to include in one’s feeds
per day, while another experiment varying the gap between two
consequent sponsored updates. What is the best combination of
these two factors? Some combinations, for example, a maximum
of 25 sponsored updates with a gap of 3 organic updates in
between, should never be launched due to bad user experience.
Testing these combinations not only wastes valuable traffic, but
also hurts the member experience. In most cases, creating a single
test that combines the two factors is impractical, but we can align
them using the same hashID so that members are randomized
identically in both experiments. We can then create the variants
for the second experiment such that when combined with the first
they generate the right combinations. Figure 5 illustrates the idea.

Figure 5: Using the same hashID to align two experiments.

3.2 Experimental Units
The first decision to make when running an experiment is whom
to run it on. The experimental unit refers to both the entity
randomly assigned to treatment and control (randomization unit)
and the unit metrics are calculated and averaged over (analysis
unit). We assume these two units are the same in our discussion.
The most common case when they do differ (e.g. computing the
metric Click-Through-Rate when experimenting on users) is well
discussed in the literature [8, 13] and hence omitted in this paper.

In this section, we use guest experimentation as an example to
discuss how XLNT supports different experimental units and
some of the challenges we encounter. In addition, we introduce an
interesting problem that arises particularly in a social network
setting where the same user can play two different roles with each
needing to be tested separately.

3.2.1 Guest Experiments
Most of our experiments focus on optimizing the member
experience. However, we also run experiments on public pages
such as the registration page and public profiles. Providing an
excellent user experience on these pages is critical because they
ultimately drive sign-ups.
The XLNT platform makes it easy to run an experiment on guest
users (or any other unit the experimenter requires). A browser ID,
instead of a member ID, is usually used to identify guest users and
is passed to the “getTreatment” call the same way as a member ID
(see Section 2.2). The browser ID is associated with a different
URN type called “guest” which is then recorded as part of the
experiment logs (Section 2.2.1). Targeting is also possible. Even
though there is no rich profile data associated with a browser ID,
properties that are available at run time such as the browser type,
or the geographic location computed by reversing the IP address

can all be used for targeting (Section 2.1.2). Our offline analysis
pipeline uses the URN type to differentiate between experimental
units and automatically joins metrics with the corresponding
experiment assignment information. This enables us to have a
single workflow to handle analysis on various experimental units.

One challenge is to handle transitions between member and guest
status of the same user during an experiment. There are mainly
two cases when this happens: a guest user becoming a member, or
a member transitioning between logged-in and logged-out states.
The latter is less of a concern since a member’s logged out
activities on the site is very limited and has little influence over
our experiments. The former, however, is of particular concern for
experiments optimizing registration and onboarding flow as one
unified experience. For example, we have one guest experiment
promoting registration using the “Signup with Facebook” option,
in which case certain information can then be automatically filled
during the onboarding process to provide a better member
experience. Even though the experiment is randomized on the
browserID, we need to have a measurement based on both
browserID and memberID. This is a common use case as
information collected on the guest side helps us tailor the
experience on the member side. To achieve the continuity, we can
make a small customization on the application client (Section 2.2)
to emit two pieces of tracking events, one based on the browserID
(the default one) and the other on the memberID. The analysis
workflow then automatically picks up both events and generates
two reports, one for each ID.

Other experimental units have their unique challenges as well.
Take experimenting on LinkedIn groups as an example. A
member can belong to multiple groups, so we can no longer
assume independence between units. This presents a similar
challenge as the network A/B testing problem to be discussed in
Section 3.4.

3.2.2 Dual Roles of a User
There are different experimental units even when we only
consider members on the site. This is the case because every
member holds two different roles in a social network as both the
one performing an action and the one receiving an action. For
example, a member can view others’ profiles or receive profile
views. Similarly, they can endorse someone or be endorsed.

It is important to know which role we are experimenting on and
analyze accordingly. If an experiment is randomizing on
endorsers, endorsees are going to be evenly distributed across
treatment and control. Therefore, analyzing the number of
endorsements received gives no indication on how the experiment
performs. Similarly, an experiment that encourages members to
send more invitations should not be evaluated based on the
number of invitations received. Essentially, even though the total
number of actions is the same counting by either role, how the
actions are attributed needs to be aligned with the experimental
unit. Moreover, some attributions, such as the number of
invitations accepted, are time-lagged, in which case we need to
create additional metrics to capture the time dimension (e.g.
invitation accepted by day X).
We need to be even more careful when we have experiments
aiming at assessing impacts on both sides. As an example, we
recently considered allowing members to include a custom
background image on their profile page. We wanted to evaluate
whether members would view more profiles and receive more
profile views. Two experiments (testKeys) were created, one
allowing a member to upload an image (viewee experiment) and
the other allowing a member to see the image if there is one

(viewer experiment). However, these two experiments cannot be
fully independent because viewer and viewee are simply opposite
perspectives of the same member. Members who are able to
upload background images should also be able to see them,
especially on their own profiles. To address this issue, we applied
the same hashID to both experiments to ensure the same treatment
assignments. A more subtle but important point is that the
experiment effect depends on the percentage of members
receiving the treatment. Clearly, if only 1% of profiles have the
background image, a viewer’s behavior is less likely to be
impacted compared to if all profiles had a background image.
Therefore, the bias is smallest when the treatment is ramped close
to 100%. On the other hand, running the experiments at 50/50
gives the least variance. It is thus a bias and variance trade-off that
the team has to keep in mind when evaluating the experiment
results.

3.3 Offline Experiments
In an online experiment, users trickle into the A/B test as they
visit LinkedIn. The experimenter has no prior information on who
will be in the experiment, and users’ engagement is measured
through their activities on the site, e.g. pageviews and clicks.
Many of the experiments we run at LinkedIn are such online
experiments. However, because LinkedIn is a member-based
social network, there are also many experiments that are “offline”,
in which case the experiment users do not necessarily have an
online activity. We walk through three scenarios below.

Email Experiments. Emails are usually sent to members
independent of whether they visit the online site or not. For
example, a member would receive a notification email if another
member sends them an invitation to connect. Not everyone who
gets an email would come to the site. Therefore, if we only
consider active members when analyzing an email experiment we
are likely to introduce a bias. For instance, if the treatment email
has a more attractive subject line that encourages more members
to click and visit the online site, we are likely to see a drop in
many key metrics (e.g. average pageviews) if only active
members are taken into account because the email tends to drive
less engaged members to visit LinkedIn. In other words, the
experiment population cannot be determined only with online user
activity. It needs to take into account all users who received the
email. To make it even more complex, we also have experiments
that attempt to reduce the email footprint by filtering out emails
that are less relevant to members. In these cases, it is not sufficient
to only look at users who actually receive the email, but to also
include users who would have received the email had there been
no relevance filtering.

Email Campaign. We have recently revamped the Who Viewed
My Profile page. The product team wants to measure through an
A/B test if the new changes are indeed better, and if so, by how
much. The marketing team wants to create a buzz around the new
page by starting an email campaign. This is a very common
scenario, but how can the A/B test and the email campaign
coexist? Clearly, we can only send campaign emails to the
treatment group as there is nothing new for members in control.
However, this would contaminate the online A/B test because the
campaign encourages more members from the treatment to visit.
To make sure the experiment samples are unbiased, similar to an
email experiment discussed earlier, we need to identify the
matching population who would have received the email in the
control group as well. For instance, if the emails are sent to
treatment members selected through process X, the same process
needs to be applied to the control group to select those who would

have received the email if they were in treatment. It is important
to note that even though these two populations are unbiased, the
difference between the two populations is no longer just the effect
of the newer page, but a compounded effect of both the email
campaign and the new page. It may be a subtle point, but this
combination is in fact a better representation of the final impact
we would like to measure from launching the new page. It is,
however, crucial to realize that email campaigns have a strong
novelty effect that dies out over time, so we need to keep the
experiment running for a longer time period till the effect
stabilizes. There are also occasions where one wants to measure
the impact of these two factors separately, in which case we
would either create a separate treatment bucket that receives no
email campaign, or measure the A/B test first before setting off
the campaign.
Cohort Experiments. It is common practice at LinkedIn to run
A/B tests on a cohort of members who are pre-selected offline. As
an example, we tested a new feature where members get a push
notification on their LinkedIn profile page if they have not visited
the homepage for a while. The first thing the experimenter did
was to gather a list of members who have not visited the
homepage for more than 7 days and used it to create a customized
targeting attribute (Section 2.1.2). These targeted members are
then split between treatment and control, and the notification was
presented to only members in the treatment cohort. Such cohort
experimentation is a great way to leverage the capability of the
XLNT platform to test out ideas without having to build a full-
fledged product. Another advantage of cohort experiments is to be
able to measure long-term member impact without the dilution of
members newly added to experiments. However, one common
pitfall is that people try to update the cohort selection during the
experiment, while the selection criteria is directly related to the
experiment outcome. In the push notification example, the
treatment encourages more members to visit LinkedIn homepage,
though once a member visits the homepage, he or she would
disappear from the updated cohort list. Therefore the updated
treatment bucket would end up with fewer members which creates
a bias. Our suggestion is to use a static cohort or to include the
previous cohort in the analysis if an update is necessary.

3.4 Network A/B Testing
In our discussion thus far, we have assumed the Rubin causal
model [1], a standard machinery of testing framework, when
conducting and analyzing A/B tests. A key assumption made in
Rubin causal model is the “Stable Unit Treatment Value
Assumption” (SUTVA), which states that the behavior of each
sample in the experiment depends only on their own treatment and
not on the treatments of others.

This is a plausible assumption in most practical applications. For
example, a user who is served better search results is more likely
to click, and that behavior is entirely independent of others using
the same search engine. However, such assumption does not
always hold in experiments run on social networks. In a social
network setting, a user’s behavior is likely impacted by that of
their social neighborhood [2, 3, 4]. In most cases, a user would
find a new feature more valuable and hence more likely to adopt it
as more of their neighbors adopt it. For example, video chat is a
useless feature unless one’s friends use it too. In an A/B
experiment, this implies that if the treatment has a significant
impact on a user, the effect would spill over to his/her social
circles, regardless whether his/her neighbors are in treatment or
control.

This poses a special challenge for running A/B tests in many
online social and professional networks like Facebook, Twitter
and LinkedIn. Many features tested there are likely to have
network effects. For example, a better recommendation algorithm
in treatment for the People You May Know module on LinkedIn
encourages a user to send more invitations. However, users who
receive such invitations can be in the control variant and when
they visit LinkedIn to accept the invitation they may discover
more people they know. If the primary metric of interest were the
total number of invitations sent, we would see a positive gain in
both the treatment and the control groups. The treatment effect
estimated ignoring network effect would be biased and would not
fully capture the benefit of the new algorithm. Such bias exists in
testing almost any features that involve social interactions, which
is truly ubiquitous in a social network environment.
To address this challenge, we need to take users’ network
connections into consideration when sampling them into treatment
and control [19]. Essentially, we take the following two-stage
procedure:

1. Partition the users into clusters.
2. Treat each cluster as a unit for randomization so all users in

one cluster have the same experiment assignment.

The estimation for the treatment effect can then be based on either
the sample means, or more sophisticated estimators summarized
in [19]. We have noticed strong network effects from the network
A/B tests we have run at LinkedIn based on this sampling and
estimation framework.

4 FOSTERING AN EXPERIMENTATION
CULTURE

Running large scale A/B tests is not just a matter of infrastructure
and best practices, establishing a strong experimentation culture is
also key to embedding A/B testing as part of the decision making
process. Apart from building the basic functionalities any A/B
testing platform requires, we have identified four necessary
ingredients that have helped us instill experimentation deeply into
our culture at LinkedIn. We share them in the rest of the section.

4.1 Integration with Business Reporting
XLNT produces over 1000 metrics for A/B test reports. Similar
metrics are often used in business reporting for decision making
as well. These two sets of metrics used to be computed separately
and much effort was spent on investigating differences when they
happened.

We realized the importance of using the same definitions of
metrics across reporting and experimentation, and hence have
worked with various teams at LinkedIn to evolve our metrics
pipeline to be the unified metrics pipeline leveraged by the entire
company. By making our experiment results and business reports
“comparable”, we have made it possible for R&D teams to relate
changes in business numbers with experiment launches.
Moreover, the integration also provides the foundation that
enables other organizations such as Finance to bake A/B test
results into business forecasting.

4.2 Leveraging Site Wide Impact
In addition to providing product development with a directional
signal, A/B testing is often utilized to measure impact and assess
ROI (Return-On-Investment). A report based on triggered analysis
(Section 2.2.1) is great at providing a directional signal, however,
it does not accurately represent the global lift that will occur when
the winning treatment is ramped to 100% (holding everything else
constant). The reason is two-fold: 1) Most experiments only target

a subset of the entire user population. 2) Most experiments only
trigger for a subset of their targeted population. In other words,
triggered analysis only provides evaluation of the local impact,
not the global impact of an experiment.

To address this concern, we compute the Site Wide Impact,
defined as the percentage delta between two parallel universes:
one with treatment applied to only targeted users and control to
the rest, the other with control applied to all. With site wide
impact provided for all experiments, teams are able to compare
results across experiments regardless of their targeting and
triggering conditions. Moreover, Site Wide Impact from multiple
segments of the same experiment can be added up to give an
assessment of the total impact, which is particularly helpful when
each segment is running at different percentages and has to be
analyzed separately to avoid Simpson’s Paradox [31].

However, computing Site Wide Impact explicitly for every metric
and report we generate would be more than doubling our current
computation effort. It turns out that Site Wide Impact depends
only on (1) the summary statistics that are already computed as
part of the triggered report, and (2) the global total with a
matching analysis date range as the experiment report (see
Appendix A). For most of our metrics that are additive across
days, we can simply keep a daily counter of the global total and
add them up for any arbitrary date range. However, there are
metrics, such as the number of unique visitors, which are not
additive across days. Instead of computing the global total for all
date ranges we generate reports for (an O(n2) problem), we
estimate them based on the daily totals (see Appendix A for more
details), saving more than 99% of the computation cost without
sacrificing much accuracy.

One interesting phenomenon we observe is that the local impact
(percentage delta from triggered analysis) and the Site Wide
Impact can sometimes disagree directionally for ratio metrics such
as CTR. For example, in a recent experiment testing “connection
request” emails targeting English speaking members with fewer
than 50 connections, we observed a -9.4% local impact on CTR
while a +0.5% Site Wide Impact. Mathematically, this is an
instance of Simpon’s Paradox as the overall site wide CTR is
essentially a linear combination of the within-segment and
outside-segment CTR. The real challenge, however, is to decide
which number to use for decision making. We believe that even
though Site Wide Impact has a stronger business implication, the
local impact is a better indication of user satisfaction in this case.

4.3 Simplifying Multiple Testing
Multiple testing is a common problem in the field of A/B testing
[30] and LinkedIn is no exception. With over 1000 metrics
computed for each experiment, this issue is so prevalent that the
most common question we hear from experimenters is “why is
this irrelevant metric significant?”

Even though we have tried to educate people on the topic of
multiple testing, many are still clueless as what they should do
when a metric is unexpectedly significant. What’s worse, some
people even lost trust in our A/B reports because they couldn’t tell
whether a metric is moved for real or simply due to multiple
testing.

To this end, we have come up with a two-step rule-of-thumb for
experimenters to follow:

1. Divide all metrics into three groups: 1) First order metrics are
those expected to be impacted by the experiment; 2) Second
order metrics are those potentially impacted, e.g. through

cannibalization; 3) Third order metrics are those unlikely to
be impacted.

2. Apply tiered significance levels to each group. We
recommend our experimenters to use 0.05, 0.01 and 0.001
respectively.

Our rule-of-thumb is in fact based on an interesting Bayesian
interpretation. It boils down to how much we believe the null
hypothesis (H0) is true before we even run the experiment.
Believing that the posterior probability on H0 should be consistent
across all metrics, given different priors on H0, we essentially vary
the probability of observing the data given H0, which is the
definition of p-value in the frequentist interpretation. Since the
significance level is the cutoff used for p-values, this leads to
adjusting the thresholds accordingly. In particular, the three
significance levels 0.05, 0.01 and 0.001 reflect that we believe an
experiment having a prior probability of 1/2, 1/6 and 1/51
impacting each of the three metric groups.
This interpretation establishes a simple mathematical equivalence
between people’s prior belief on whether a metric is impacted and
the significance level. Thus for those who are a bit more
sophisticated they can easily come up with their own significance
level tiers to match their prior beliefs.

4.4 Tracking the Most Impactful
Experiments

LinkedIn is a deeply interconnected site. When it comes to
experimentation, each team in fact plays two different roles. On
the one hand, they run experiments to improve their metrics; on
the other hand, they are also responsible for the global health of
the same metrics, even when they may be impacted by
experiments from other teams. Recognizing the importance of the
second responsibility, we launched a feature called “Most
Impactful Experiments” (MIE) to allow metric owners to follow
experiments that impact the metrics they care about.
MIE is a major milestone for experimentation at LinkedIn. Not
only does it drive greater transparency regarding experiment
launch decisions, it also encourages more discussions to occur
which in turn increases the overall knowledge of experimentation
in the company.

To ensure MIE only listed the most relevant experiments, we use
the following three-step algorithm:

1. Filter out all the experiments that have potential quality
issues based on our alerting system.

2. For each metric, control False Discovery Rate using the
Benjamini-Hochberg algorithm [17].

3. Score the experiments from step 2 based on three factors:
Site Wide Impact, treatment percentage and experiment
duration. These factors are then combined using the
Analytical Hierarchy Process [18]. To scale to over 1000
metrics, we use empirical cumulative density functions to
automatically control the fraction of experiments selected for
each metric. Furthermore, historical experiments are used to
ensure the relevance of selected experiments is not affected
by the number of high-impact experiments available at any
given time.

There are a couple of interesting observations and lessons learnt
while developing this capability:

• Large Initial Impact. We observed that it is common for
newly activated experiments to have overly positive or
negative impacts. However, for these experiments the impact
tends to shrink over time or become statistically

insignificant. While such scenario can be due to novelty
effect, most of them are just statistical artifact as explained in
[7]. Controlling the false positive rate was helpful in
eliminating these, but to further alleviate the problem, we
only consider experiments with results over at least three
days and penalize short experiments in our ranking
algorithm.

• Personalizing Threshold. Picking the optimal threshold
presents a challenging trade-off between precision and recall.
Interestingly, three months after launching MIE, we have
noticed that there are two well-separated groups of users. The
first group is the functional users, including engineers,
product managers and data scientists who themselves own
experiments. The second group is the managerial users,
including top-level managers and executives. Most users
from the first group tend to follow metrics that are mostly
impacted by their experiments. A higher recall can allow
them to see more experiments beyond the ones they own. On
the other hand, we want to keep a higher threshold for the
second group of users to maintain a high precision.

5 CONCLUSION
In this paper, we shared the details of building a powerful and
flexible experimentation platform that enables teams across
LinkedIn to make informed decisions faster and at scale.
Furthermore, we discussed several challenging A/B testing
scenarios and shared many real examples applicable to social
networks. Realizing the importance of a strong experimentation
culture, we discussed four ingredients that helps us instill
experimentation deeply into every decision making process at
LinkedIn, even across roles outside of R&D.
One challenge we have not discussed here is how to provide
guided insights to the experiment owners. Traditionally,
controlled experiments have been used to answer “what” has been
impacted, but not to answer “why”. By utilizing the amount of
information we have available for each experiment, in terms of
both the metrics and dimensions, we hope to automatically
generate insights that can better guide product development.

There are also cases where it is not possible to run an A/B test due
to practical reasons, so we have to leverage quasi-experimental
designs where users in treatment and control groups are matched
post hoc using techniques such as propensity score matching.

Lastly, we hope that the topics we covered will lead to further
research and development of A/B testing in large scale social
networks.

6 ACKNOWLEDGMENTS
The authors wish to thank June Andrews, Drew Moxon, Karan
Ahuja, Alexis Baird, Caroline Gaffney, Udi Milo and Xin Fu for
insightful discussions on several of the examples. We have been
fortunate to be part of the team developing the experimentation
platform and we wish to thank all members of the XLNT team,
including Adam Smyczek who made significant contributions
before leaving LinkedIn. Finally, we wish to thank many people
for being strong advocates of experimentation at LinkedIn,
especially Igor Perisic.

7 REFERENCES
[1] Rubin, Donald B. Estimating causal effects of treatments in

randomized and nonrandomized studies. Journal of
educational Psychology, 66(5):688, 1974.

[2] Ugander, Johan, Karrer, Brian, Backstrom, Lars and
Kleinberg, Jon. Graph cluster randomization: network

exposure to multiple universes. Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 329–337. ACM, 2013.

[3] Katzir, Liran, Liberty, Edo and Somekh Oren.
Framework and algorithms for network bucket testing.
Proceedings of the 21st international conference on World
Wide Web, pages 1029–1036. ACM, 2012.

[4] Toulis, Panos and Kao, Edward. Estimation of causal peer
influence effects. Proceedings of The 30th International
Conference on Machine Learning, pages 1489–1497, 2013.

[5] Eckles, Dean, Karrer, Brian and Ugander, Johan. Design
and analysis of experiments in networks: Reducing bias from
interference. arXiv preprint arXiv:1404.7530, 2014.

[6] Aronow, Peter M, and Samii, Cyrus. Estimating average
causal effects under general interference. arXiv preprint
arXiv:1305.6156, 2013

[7] Kohavi, Ron, et al. Trustworthy online controlled
experiments: Five puzzling outcomes explained. Proceedings
of the 18th Conference on Knowledge Discovery and Data
Mining. 2012, www.exp-
platform.com/Pages/PuzzingOutcomesExplained.aspx.

[8] Tang, Diane, et al. Overlapping Experiment Infrastructure:
More, Better, Faster Experimentation. Proceedings 16th
Conference on Knowledge Discovery and Data Mining.
2010.

[9] Kohavi, Ron, et al. Online Controlled Experiments at Large
Scale. KDD 2013: Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data
mining. 2013. http://bit.ly/ExPScale.

[10] Kohavi, Ron, et al. Seven Rules of Thumb for Web Site
Experimenters. KDD 2014: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery
and data mining. 2014.

[11] Yates, Frank, Sir Ronald Fisher and the Design of
Experiments. Biometrics, 20(2):307–321, 1964.

[12] Bakshy, Eytan, Echles, Dean and Bernstein, Michael S.
Designing and Deploying Online Field Experiments.
Proceedings of the 23rd international conference on World
Wide Web, pages 283-292, ACM, 2014

[13] Kohavi, Ron. et al. Controlled experiments on the web:
survey and practical guide. Data Mining and Knowledge
Discovery. February 2009, Vol. 18, 1, pp. 140-181.
http://www.exp-platform.com/Pages/hippo_long.aspx.

[14] Crook, Thomas, et al. Seven Pitfalls to Avoid when
Running Controlled Experiments on the Web. [ed.] Peter
Flach and Mohammed Zaki. KDD '09: Proceedings of the
15th ACM SIGKDD international conference on knowledge
discovery and data mining. 2009, pp. 1105-1114.
http://www.exp-platform.com/Pages/ExPpitfalls.aspx.

[15] Ioannidis, John PA. "Why most published research findings
are false." PLoS medicine 2.8 (2005): e124.

[16] Wacholder, Sholom, et al. "Assessing the probability that a
positive report is false: an approach for molecular
epidemiology studies." Journal of the National Cancer
Institute 96.6 (2004): 434-442.

[17] Benjamini, Yoav, and Yosef Hochberg. "Controlling the
false discovery rate: a practical and powerful approach to

multiple testing." Journal of the Royal Statistical Society.
Series B (Methodological) (1995): 289-300.

[18] Saaty, Thomas L. "How to make a decision: the analytic
hierarchy process."European journal of operational
research 48.1 (1990): 9-26.

[19] Gui, Huan, Xu, Ya, Bhasin, Anmol, Han Jiawei. Network
A/B Testing: From Sampling to Estimation. Proceedings of
the 24rd international conference on World Wide Web,
ACM, 2015

[20] Box, George EP, J. Stuart Hunter, and William G.
Hunter. "Statistics for experimenters: design, innovation,
and discovery." AMC 10 (2005): 12.

[21] Gerber, A. S., and Green, D. P. Field Experiments: Design,
Analysis, and Interpretation. WW Norton, 2012

[22] Sumbaly, Roshan, et al. "Serving large-scale batch
computed data with project voldemort." Proceedings of the
10th USENIX conference on File and Storage Technologies.
USENIX Association, 2012.

[23] Tate, Ryan. The Software Revolution Behind LinkedIn’s
Gushing Profits. [Online]
http://www.wired.com/2013/04/linkedin-software-revolution

[24] Auradkar, Aditya, et al. "Data infrastructure at
LinkedIn." Data Engineering (ICDE), 2012 IEEE 28th
International Conference on. IEEE, 2012.

[25] Kreps, Jay, Neha Narkhede, and Jun Rao. "Kafka: A
distributed messaging system for log
processing." Proceedings of 6th International Workshop on
Networking Meets Databases (NetDB), Athens, Greece.
2011.

[26] Naga, Praveen Neppalli, Real-time Analytics at Massive
Scale with Pinot. [Online] September 29, 2014
http://engineering.linkedin.com/analytics/real-time-analytics-
massive-scale-pinot

[27] Fisher, Ronald A. Presidential Address. Sankhya: The
Indian Journal of Statistics. 1938, Vol. 4, 1.
http://www.jstor.org/stable/40383882.

[28] Montgomery, Douglas C. Design and analysis of
experiments. John Wiley & Sons, 2008.

[29] Betz, Joe, Tagle, Moira. Rest.li:RESTful Service
Architecture at Scale. [Online] February, 19, 2013
https://engineering.linkedin.com/architecture/restli-restful-
service-architecture-scale

[30] Romano, Joseph P. Azeem M. Shaikh and Michael Wolf.
2010b Multiple Testing. New Palgrave Dictionary of
Economics.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41
8.4975&rep=rep1&type=pdf

[31] Wikipedia. Simpson’s Paradox. [Online]
http://en.wikipedia.org/wiki/Simpson%27s_paradox

[32] McFarland, Colin. Experiment!: Website conversion rate
optimization with A/B and multivariate testing. s.1. : New
Riders, 2012.978-0321834607

[33] Eisenberg, Bryan. How to Improve A/B Testing. ClickZ
Network. [Online] April 29, 2005.
www.clickz.com/clickz/column/1717234/how-improvem-a-
b-testing.

[34] Vemuri, Srinivas, Varshney, Maneesh, Puttaswamy,
Krishna and Liu, Rui. Execution Primitives for Scalable
Joins and Aggregations in Map Reduce. Proceedings of the
VLDB Endowment, Vol. 7, No. 13

[35] Varshney, Maneesh, Vemuri, Srinivas. Open Sourcing
Cubert: A High Performance Computation Engine for
Complex Big Data Analytics [Online] November 11, 2014
https://engineering.linkedin.com/big-data/open-sourcing-
cubert-high-performance-computation-engine-complex-big-
data-analytics

APPENDIX
A. Site Wide Impact
We use the average number of clicks as an example metric to
show how we compute Site Wide Impact. Let Let
𝑋! ,𝑋! ,𝑋!"#𝑎𝑛𝑑 𝑋!"#$%" denote the total number of clicks in the
treatment group, the control group, the whole segment (including
the treatment, the control and potentially other variants) and
globally across the site, respectively. Similarly, let
𝑛! ,𝑛! ,𝑛!"#𝑎𝑛𝑑 𝑛!"#$%" denote the sample sizes for each of the
four groups mentioned above.

It is easy to see that the total number of clicks in the treatment
(control) universe can be estimated as

𝑋!"#$%&'(& =
𝑋!
𝑛!
𝑛!"# + (𝑋!"#$%" − 𝑋!"#)

𝑋!"#$%&'(& =
𝑋!
𝑛!
𝑛!"# + (𝑋!"#$%" − 𝑋!"#)

Then the Site Wide Impact is computed as

𝑆𝑊𝐼 = (
𝑋!"#$%&'(&
𝑛!"#$%&'(&

−
𝑋!"#$%&'(&
𝑛!"#$%&'(&

)/
𝑋!"#$%&'(&
𝑛!"#$%&'(&

 = (

𝑋!
𝑛!
− 𝑋!𝑛!
𝑋!
𝑛!

)×(

𝑋!
𝑛!
𝑛!"#

𝑋!
𝑛!
𝑛!"# + 𝑋!"#$%" − 𝑋!"#

)

 = 𝛥 × 𝛼

which indicates that the Site Wide Impact is essentially the local
impact 𝛥 scaled by a factor of 𝛼, and 𝑋!"#$%" is the only ingredient
that is not already computed as part of summary statistics for the
triggered analysis.
For metrics such as average number of clicks, 𝑋!"#$%" for any
arbitrary date range can be computed by summing over clicks
from corresponding single days. However, for metrics such as
average number of unique visitors, de-duplication is necessary
across days. To avoid having to compute 𝛼 for all date ranges we
generate reports for, we estimate cross-day 𝛼 by averaging the
single-day 𝛼’s.

There is one other group of metrics that are ratio of two metrics.
One example is Click-Through-Rate, which equals Clicks over
Impressions. The derivation of Site Wide Impact for ratio metrics
is similar, with the sample size replaced by the denominator
metric.

